搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有界黏性流体中自由球形粒子的声辐射力

刘腾 乔玉配 宫门阳 刘晓宙

引用本文:
Citation:

有界黏性流体中自由球形粒子的声辐射力

刘腾, 乔玉配, 宫门阳, 刘晓宙
cstr: 32037.14.aps.74.20241354

Acoustic radiation force of a free spherical particle in a bounded viscous fluid

LIU Teng, QIAO Yupei, GONG Menyang, LIU Xiaozhou
cstr: 32037.14.aps.74.20241354
PDF
HTML
导出引用
  • 声辐射力的研究是提高粒子操控技术的精确性和有效性的重要基础. 基于声波动理论, 建立了有界黏性流体中自由球形粒子的声辐射力计算模型, 结合球函数的加性定理, 推导了平面波垂直入射情况下相应的声辐射力解析表达式. 理论计算中考虑了小球为自由状态, 将粒子的动力学方程作为计算声辐射力的修正项. 在考虑流体黏度、粒子材料、粒子位置以及边界等因素对声辐射力影响的基础上进行数值计算. 结果表明, 随着流体黏度的增大, 声辐射力曲线的共振峰被拓宽; 相比于液体材料的小球, 弹性材料小球的声辐射力的振荡现象更明显; 随着阻抗边界反射系数的增大, 声辐射力振幅增大; 小球位置的不同主要影响其声辐射力的振荡现象. 该研究为有界黏性流体中自由粒子的声操控提供了理论基础, 并有助于生物医学等领域更好地利用声辐射力操控粒子.
    The manipulation of particles by acoustic radiation force (ARF) has the advantages of non-invasiveness, high biocompatibility, and wide applicability. The study of acoustic radiation force is an important foundation for improving the accuracy and effectiveness of particle manipulation technology. Based on the acoustic wave theory, a theoretical model for the ARF of a free spherical particle in a bounded viscous fluid is established. The ARF for the case of a normal incident plane wave is derived by applying the translation addition theorem to spherical function. The dynamic equation of a free sphere is required as a correction term for calculating the ARF. The effects of the fluid viscosity, particle material, particle distance from boundary, and the boundary on the ARF are analyzed by numerical simulation. The results show that the resonance peak of the ARF curve is broadened with the increase of the viscosity of the fluid. Compared with the values of the ARFs of a PE sphere in a viscous and an ideal fluid, the fluid viscosity has a small influence and the viscosity effect can be ignored when kR is much less than 1. However, for the cases where kR is greater than or equal to 1, the amplitude of the ARF experienced by a particle in a viscous fluid is much greater than that in an ideal fluid. The influence of fluid viscosity on the ARF is significant and cannot be ignored. Moreover, compared with a liquid material sphere, the oscillation of ARF in an elastic material sphere is more pronounced. This is because the momentum transfer between sound waves and elastic materials is greater than that between sound waves and liquid materials. In addition, the amplitude of the ARF increases with the increase of the reflection coefficient of the impedance boundary, but its resonance frequency is not affected. Finally, the position of the sphere mainly affects the oscillation phenomenon of its ARF. The peaks and dips of the ARF become more densely packed with the growth of distance-to-radius. It is worth noting that the reflection coefficient mainly affects the amplitude of the ARF, while the position of the sphere affects the period of the ARF function. The results indicate that more efficient manipulation of particles can be achieved through appropriate parameter selection. This study provides a theoretical basis for acoustically manipulating a free particle in a bounded viscous fluid and contributes to the better utilization of ARF for particle manipulation in biomedical and other fields.
      通信作者: 乔玉配, yupeiqiao@gznu.edu.cn ; 刘晓宙, xzliu@nju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0211400)、国家自然科学基金(批准号: 12174192, 12204119)、声场声信息国家重点实验室开放课题研究基金(批准号: SKLA202410)和贵州省科技计划(批准号: ZK[2023]249)资助的课题.
      Corresponding author: QIAO Yupei, yupeiqiao@gznu.edu.cn ; LIU Xiaozhou, xzliu@nju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0211400), the National Natural Science Foundation of China (Grant Nos. 12174192, 12204119), the State Key Laboratory of Acoustics, Chinese Academy of Sciences (Grant No. SKLA202410), and the Science and Technology Foundation of Guizhou Province, China (Grant No. ZK[2023]249).
    [1]

    Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [2]

    Meng L, Cai F Y, Li F, Zhou W, Niu L L, Zheng H R 2019 J. Phys. D Appl. Phys. 52 273001Google Scholar

    [3]

    King L V 1934 Proc. R. Soc. London 147 861Google Scholar

    [4]

    Hasegawa T, Yosioka K 1969 J. Acoust. Soc. Am. 46 5Google Scholar

    [5]

    Marston P L 2006 J. Acoust. Soc. Am. 120 3518Google Scholar

    [6]

    Gong Z X, Marston P L, Li W 2019 Phys. Rev. E 99 063004Google Scholar

    [7]

    臧雨宸, 苏畅, 吴鹏飞, 林伟军 2022 物理学报 71 104302Google Scholar

    Zang Y C, Su C, Wu P F, Lin W J 2022 Acta Phys. Sin. 71 104302Google Scholar

    [8]

    Li S Y, Shi J Y, Zhang X F, Zhang G B 2019 J. Acoust. Soc. Am. 145 5Google Scholar

    [9]

    Azarpeyvand M, Azarpeyvand M 2013 J. Sound Vib. 332 9Google Scholar

    [10]

    Zang Y C, Lin W 2019 Results Phys. 16 102847Google Scholar

    [11]

    Mitri F G 2009 Ultrasonics 49 794Google Scholar

    [12]

    Marston P L 2009 J. Acoust. Soc. Am. 125 6Google Scholar

    [13]

    Gong M Y, Shi M J, Li Y Y, Xu X, Fei Z H, Qiao Y P, Liu J H, He A J, Liu X Z 2023 Phys. Fluids 35 057108Google Scholar

    [14]

    Gong M Y, Xu X, Qiao Y P, Liu J H, He A J, Liu X Z 2024 Chin. Phys. B 33 014302Google Scholar

    [15]

    Gaunaurd G C, Huang H 1991 J. Acoust. Soc. Am. 96 2526Google Scholar

    [16]

    Miri A K, Mitri F G 2011 Ultrasound Med. Biol. 37 2Google Scholar

    [17]

    Westervelt P J 1951 J. Acoust. Soc. Am. 23 3Google Scholar

    [18]

    Doinikov A A 1994 J. Fluid Mech. 267 1Google Scholar

    [19]

    Qiao Y P, Gong M Y, Wang H B, Lan J, Liu T, Liu J H, Mao Y W, He A J, Liu X Z 2021 Phys. Fluids 33 047107Google Scholar

    [20]

    Kundu P K, Cohen I M 2002 Fluid Mechanics (San Diego: Academic Press) p78, p96

    [21]

    Huang H, Gaunaurd G C 1997 Int. J. Solids Struct. 34 591Google Scholar

    [22]

    Hasheminejad S M 2001 Acta Acust. United Ac. 87 4

    [23]

    Embleton T F W 1954 J. Acoust. Soc. Am. 26 1Google Scholar

    [24]

    Yosioka K, Kawasima Y 1955 Acta. Acust. United Ac. 5 3

    [25]

    Wang H B, Gao S, Qiao Y P, Liu J H, Liu X Z 2019 Phys. Fluids 31 047103Google Scholar

    [26]

    Hartman B, Jarzynski J 1972 J. Appl. Phys. 43 11Google Scholar

  • 图 1  平面波入射有界黏性流体中自由球形粒子的几何关系示意图

    Fig. 1.  Schematic diagram of a free spherical particle in a bounded viscous fluid with a plane wave incidence.

    图 2  自由PE小球在不同${\delta {/ } R}$的流体中声辐射力随kR的变化

    Fig. 2.  ARFs for a free PE sphere versus kR at different ${\delta {/ } R}$.

    图 3  低黏流体(水)中不同材料自由球形粒子的声辐射力随kR的变化

    Fig. 3.  ARFs for a free sphere with different materials versus kR in the low viscosity liquid (water).

    图 4  低黏流体(水)中自由PE小球在不同阻抗边界附近的声辐射力随kR的变化

    Fig. 4.  ARFs for a free PE sphere versus kR in the low viscosity liquid (water) with different ${R_{\text{s}}}$.

    图 5  低黏流体(水)中自由PE小球放置于距边界不同位置处的声辐射力随kR的变化

    Fig. 5.  ARFs for a free PE sphere in the low viscosity liquid (water) versus kR at different d.

    表 1  自由球形粒子构成材料的物理参量[25,26]

    Table 1.  Physical parameters of free spherical particles[25,26].

    材料 密度
    /(kg·m–3)
    纵波声速
    /(m·s–1)
    横波声速
    /(m·s–1)
    油酸 938 1450
    聚乙烯(PE) 957 2430 950
    聚甲基丙烯
    酸甲酯(PMMA)
    1190 2690 1340
    下载: 导出CSV

    表 2  流体的声学参量[18]

    Table 2.  Acoustic parameters of fluids[18].

    流体 密度/(kg·m–3) 声速/(m·s–1) 动力黏度μ′/(Pa·s)
    1000 1500 0.001
    甘油 1260 1900 1.48
    下载: 导出CSV

    表 3  黏性流体和理想流体中自由PE小球所受声辐射力对比

    Table 3.  Comparisons of the ARFs on a free PE sphere in a viscous and an ideal fluid.


    流体类型
    kR
    1.0×10–4 1.0×10–2 1.0×10–1 1.0 5.0
    黏性流体 δ/R=0.002 4.8×10–12 N 5.2×10–12 N 1.1×10–10 N –2.1×10–7 N 5.6×10–8 N
    δ/R=0.004 4.8×10–12 N 5.2×10–12 N 1.4×10–9 N –2.2×10–7 N –3.7×10–6 N
    δ/R=0.02 4.8×10–12 N 5.2×10–12 N 5.3×10–8 N –2.7×10–7 N –6.7×10–6 N
    理想流体 λ′=μ′=0 4.8×10–12 N 5.2×10–12 N 1.2×10–11 N 1.7×10–13 N 6.2×10–14 N
    下载: 导出CSV
  • [1]

    Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J, Huang T J 2018 Nat. Methods 15 1021Google Scholar

    [2]

    Meng L, Cai F Y, Li F, Zhou W, Niu L L, Zheng H R 2019 J. Phys. D Appl. Phys. 52 273001Google Scholar

    [3]

    King L V 1934 Proc. R. Soc. London 147 861Google Scholar

    [4]

    Hasegawa T, Yosioka K 1969 J. Acoust. Soc. Am. 46 5Google Scholar

    [5]

    Marston P L 2006 J. Acoust. Soc. Am. 120 3518Google Scholar

    [6]

    Gong Z X, Marston P L, Li W 2019 Phys. Rev. E 99 063004Google Scholar

    [7]

    臧雨宸, 苏畅, 吴鹏飞, 林伟军 2022 物理学报 71 104302Google Scholar

    Zang Y C, Su C, Wu P F, Lin W J 2022 Acta Phys. Sin. 71 104302Google Scholar

    [8]

    Li S Y, Shi J Y, Zhang X F, Zhang G B 2019 J. Acoust. Soc. Am. 145 5Google Scholar

    [9]

    Azarpeyvand M, Azarpeyvand M 2013 J. Sound Vib. 332 9Google Scholar

    [10]

    Zang Y C, Lin W 2019 Results Phys. 16 102847Google Scholar

    [11]

    Mitri F G 2009 Ultrasonics 49 794Google Scholar

    [12]

    Marston P L 2009 J. Acoust. Soc. Am. 125 6Google Scholar

    [13]

    Gong M Y, Shi M J, Li Y Y, Xu X, Fei Z H, Qiao Y P, Liu J H, He A J, Liu X Z 2023 Phys. Fluids 35 057108Google Scholar

    [14]

    Gong M Y, Xu X, Qiao Y P, Liu J H, He A J, Liu X Z 2024 Chin. Phys. B 33 014302Google Scholar

    [15]

    Gaunaurd G C, Huang H 1991 J. Acoust. Soc. Am. 96 2526Google Scholar

    [16]

    Miri A K, Mitri F G 2011 Ultrasound Med. Biol. 37 2Google Scholar

    [17]

    Westervelt P J 1951 J. Acoust. Soc. Am. 23 3Google Scholar

    [18]

    Doinikov A A 1994 J. Fluid Mech. 267 1Google Scholar

    [19]

    Qiao Y P, Gong M Y, Wang H B, Lan J, Liu T, Liu J H, Mao Y W, He A J, Liu X Z 2021 Phys. Fluids 33 047107Google Scholar

    [20]

    Kundu P K, Cohen I M 2002 Fluid Mechanics (San Diego: Academic Press) p78, p96

    [21]

    Huang H, Gaunaurd G C 1997 Int. J. Solids Struct. 34 591Google Scholar

    [22]

    Hasheminejad S M 2001 Acta Acust. United Ac. 87 4

    [23]

    Embleton T F W 1954 J. Acoust. Soc. Am. 26 1Google Scholar

    [24]

    Yosioka K, Kawasima Y 1955 Acta. Acust. United Ac. 5 3

    [25]

    Wang H B, Gao S, Qiao Y P, Liu J H, Liu X Z 2019 Phys. Fluids 31 047103Google Scholar

    [26]

    Hartman B, Jarzynski J 1972 J. Appl. Phys. 43 11Google Scholar

  • [1] 白靖, 马文浩, 葛城显, 吴振森, 许彤. 驻波场中非均匀手征分层粒子的辐射力特性. 物理学报, 2024, 73(18): 184201. doi: 10.7498/aps.73.20240842
    [2] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控. 物理学报, 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [3] 陈聪, 张若钦, 李锋, 李志远. 基于亚波长管道增强的漩涡声场悬浮操控微粒和液滴的实验研究. 物理学报, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [4] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控. 物理学报, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [5] 齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科. 基于一维声栅共振场的大规模微粒并行排列 的实验研究. 物理学报, 2023, 72(2): 024301. doi: 10.7498/aps.72.20221793
    [6] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力. 物理学报, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [7] 彭凡, 张秀梅, 刘琳, 王秀明. 非均匀饱含黏性流体孔隙介质中声波传播及井孔声场分析. 物理学报, 2023, 72(5): 050401. doi: 10.7498/aps.72.20221858
    [8] 周达仁, 卢奂采, 程相乐, McFarland D. Michael. 基于反射系数估算的半空间边界阻抗和声源直接辐射重构. 物理学报, 2022, 71(12): 124301. doi: 10.7498/aps.71.20211924
    [9] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [10] 臧雨宸, 林伟军, 苏畅, 吴鹏飞. Gauss声束对离轴椭圆柱的声辐射力矩. 物理学报, 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [11] 朱纪霖, 高东宝, 曾新吾. 基于相位变换声镊的单个微粒平面移动操控. 物理学报, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [12] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平. 空气中一维声栅对微粒的声操控. 物理学报, 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [13] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [14] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [15] 周楠, 陈硕. 带自由面流体的多体耗散粒子动力学模拟. 物理学报, 2014, 63(8): 084701. doi: 10.7498/aps.63.084701
    [16] 蒋涛, 任金莲, 徐磊, 陆林广. 非等温非牛顿黏性流体流动问题的修正光滑粒子动力学方法模拟. 物理学报, 2014, 63(21): 210203. doi: 10.7498/aps.63.210203
    [17] 蒋云峰, 陆璇辉, 赵承良. 高度聚焦的余弦高斯光束对瑞利粒子的辐射力分析. 物理学报, 2010, 59(6): 3959-3964. doi: 10.7498/aps.59.3959
    [18] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [19] 梁子长, 金亚秋. 一层非球形粒子散射的标量辐射传输迭代解的求逆. 物理学报, 2002, 51(10): 2239-2244. doi: 10.7498/aps.51.2239
    [20] 钱祖文. 球形粒子之间的声相互作用. 物理学报, 1981, 30(4): 433-441. doi: 10.7498/aps.30.433
计量
  • 文章访问数:  473
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-09-25
  • 修回日期:  2024-11-20
  • 上网日期:  2024-11-29
  • 刊出日期:  2025-01-05

/

返回文章
返回