搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自由上浮气泡运动特性的光滑粒子流体动力学模拟

孙鹏楠 李云波 明付仁

引用本文:
Citation:

自由上浮气泡运动特性的光滑粒子流体动力学模拟

孙鹏楠, 李云波, 明付仁

Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method

Sun Peng-Nan, Li Yun-Bo, Ming Fu-Ren
PDF
导出引用
  • 基于虚功原理, 在Hu X Y等和Grenier N等的研究结果基础上推导了多相流光滑粒子流体动力学(smoothed particle hydrodynamics, SPH)控制方程, 采用精度较高的黏性力和表面张力模型, 发展了一套适用于具有大密度比和大黏性比界面的多相流SPH方法. 首先, 通过施加人工位移修正, 适当背景压力和异相界面力, 使得计算全程粒子分布相对均匀, 改善了界面处的失稳现象, 防止了异相界面处粒子的非物理性穿透; 在此基础上, 利用方形流体团振荡模型对表面张力模型进行了验证, 数值结果与解析解甚为吻合; 然后采用上浮气泡经典数值算例对比研究了不同黏性力计算方法、不同核函数的适用性以及人工位移修正的效果; 最后, 对单个气泡的上浮、变形、撕裂以及垂向两个气泡的追赶、融合等现象进行了模拟, 初步揭示了气泡上浮过程中各种有趣物理现象的细节过程和动力学机理.
    Based on the principle of virtual works, a multiphase smoothed particle hydrodynamics (SPH) model is further developed from the foundation of Hu X Y et al. (2006) and Grenier N et al. (2009). In the present model, the surface tension force implementation suitable for the multiphase flows with a large density ratio is applied, and this allows a good continuity at the multiphase interface. Artificial displacement correction is applied to keep the particles distributing uniformly in the whole flow field, and therefore any artificial viscous term is never needed; this is very important in the numerical simulation of viscous flows since the introduction of artificial viscosity changes the Reynolds number. Background pressure and interface sharpness force are added in the equation of state and the equation of momentum respectively to ensure the multiphase interface stability and smoothness; this is essential in the simulation of multiphase flows with large density difference at the multiphase interface. Two types of viscosity expressions suitable for multiphase flows are introduced and analyzed; the conclusion is that the formula proposed by Morris et al. (1997) and its similarly derived forms can give more accurate results. In the numerical validations, an oscillating droplet test is applied first to confirm the accuracy of the surface tension model and good results are achieved. This demonstrates that the artificial displacement and the interface sharp force will make negligible effects to the surface tension implementation. After that, two classic quantitative benchmarks of rising bubbles are simulated and the results of SPH agree well with the reference data. Moreover, in the two numerical benchmarks, the effect of the artificial displacement, the choice of the viscosity expression, and the type of the kernel function are compared and finally an optimal combination of these numerical aspects is recommended. Based on the above numerical investigations, the splitting process of an initially circular bubble is simulated and the numerical results agree well with the experimental data. In the last numerical case, the process of chasing and merging between two rising bubbles in vertical direction is simulated, based on which the mechanisms of these interesting interactions between two rising bubbles are analyzed. It is demonstrated in the present work that further improved multiphase SPH model may provide a potential method for the research of bubble dynamics.
      通信作者: 明付仁, mingfuren@gmail.com
    • 基金项目: 国家自然科学基金(批准号: 51479041, 51179036)资助的课题.
      Corresponding author: Ming Fu-Ren, mingfuren@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51479041, 51179036).
    [1]

    Shew W L, Pinton J F 2006 J. Stat. Mech. -Theory E 2006 01

    [2]

    Zhang A M, Cui P, Cui J, Wang Q X 2015 J. Fluid Mech. 776 137

    [3]

    Zhang A M, Sun P, Ming F 2015 Comput. Method Appl. M. 294 189

    [4]

    Zhang A M, Li S, Cui J 2015 Phys. Fluids 27 062102

    [5]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [6]

    Hua J S, Stene J F, Lin P 2008 J. Comput. Phys. 227 3358

    [7]

    Wang H, Zhang Z Y, Yang Y M, Zhang H S 2010 Chinese Phys. B 19 026801

    [8]

    Annaland M, Deen N G, Kuipers J A M 2005 Chem. Eng. Sci. 60 2999

    [9]

    Croce R, Griebel M, Schweitzer M A 2010 Int. J. Numer. Meth. Fl. 62 963

    [10]

    Mahdi D, Mohammad T R, Hamidreza M 2015 Chinese Phys. B 24 024303

    [11]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [12]

    Zhang A M, Liu Y L 2015 J. Comput. Phys. 294 208

    [13]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B-Fluid 42 69

    [14]

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701 (in Chinese) [李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701]

    [15]

    Colagrossi A, Landrini M 2003 J. Comput. Phy. 191 448

    [16]

    Chen Z, Zong Z, Li H T, Li J 2013 Ocean Eng. 59 129

    [17]

    Sun P, Ming F, Zhang A 2015 Ocean Eng. 98 32

    [18]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific)

    [19]

    Hu X Y, Adams N A 2006 J. Comput. Phys. 213 844

    [20]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [21]

    Sun P, Ming F, Zhang A, Yao X 2014 Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering San Francisco June 8-14 2014

    [22]

    Szewc K, Pozorski J, Minier J P 2013 Int. J. Multiphas. Flow 50 98

    [23]

    Ji B, Luo X W, Wu Y L, Peng X X, Duan Y L 2013 Int. J. Multiphas. Flow 51 33

    [24]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [25]

    Zainali A, Tofighi N, Shadloo M S, Yildiz M 2013 Comput. Method Appl. M. 254 99

    [26]

    Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L 2009 Int. J. Numer. Meth. Fl. 60 1259

    [27]

    Colagrossi A, Antuono M, Souto-Iglesias A, Le Touzé D 2011 Phys. Rev. E 84 026705

    [28]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [29]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [30]

    Colagrossi A, Bouscasse B, Antuono M, Marrone S 2012 Comput. Phys. Commun. 183 1641

    [31]

    Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G 2013 J. Comput. Phys. 245 456

    [32]

    Chen Z, Zong Z, Liu M B, Zou L, Li H T, Shu C 2015 J. Comput. Phys. 283 169

    [33]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 物理学报 61 224701]

    [34]

    Jin H B, Ding X 2005 J. Comput. Phys. 202 699

    [35]

    Molteni D, Colagrossi A 2009 Comput. Phys. Commun. 180 861

    [36]

    Shepard D 1968 Proceedings of the 23rd ACM national conference: ACM 517

    [37]

    Monaghan J, Gingold R 1983 J. Comput. Phys. 52 374

    [38]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [39]

    Adami S, Hu X Y, Adams N A 2010 J. Comput. Phys. 229 5011

    [40]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [41]

    Zhang A M, Cao X Y, Ming F R, Zhang Z F 2013 Appl. Ocean Res. 42 24

    [42]

    Chen R, Tian W, Su G, Qiu S, Ishiwatari Y, Oka Y 2011 Chem. Eng. Sci. 66 5055

    [43]

    Marrone S 2012 Ph. D. Dissertation (Rome: University Of Rome)

  • [1]

    Shew W L, Pinton J F 2006 J. Stat. Mech. -Theory E 2006 01

    [2]

    Zhang A M, Cui P, Cui J, Wang Q X 2015 J. Fluid Mech. 776 137

    [3]

    Zhang A M, Sun P, Ming F 2015 Comput. Method Appl. M. 294 189

    [4]

    Zhang A M, Li S, Cui J 2015 Phys. Fluids 27 062102

    [5]

    Yu Z, Yang H, Fan L S 2011 Chem. Eng. Sci. 66 3441

    [6]

    Hua J S, Stene J F, Lin P 2008 J. Comput. Phys. 227 3358

    [7]

    Wang H, Zhang Z Y, Yang Y M, Zhang H S 2010 Chinese Phys. B 19 026801

    [8]

    Annaland M, Deen N G, Kuipers J A M 2005 Chem. Eng. Sci. 60 2999

    [9]

    Croce R, Griebel M, Schweitzer M A 2010 Int. J. Numer. Meth. Fl. 62 963

    [10]

    Mahdi D, Mohammad T R, Hamidreza M 2015 Chinese Phys. B 24 024303

    [11]

    Zhang A M, Wang S P, Wu G X 2013 Eng. Anal. Bound. Elem. 37 1179

    [12]

    Zhang A M, Liu Y L 2015 J. Comput. Phys. 294 208

    [13]

    Zhang A M, Wang S P, Huang C, Wang B 2013 Eur. J. Mech. B-Fluid 42 69

    [14]

    Li S, Sun L Q, Zhang A M 2014 Acta Phys. Sin. 63 184701 (in Chinese) [李帅, 孙龙泉, 张阿漫 2014 物理学报 63 184701]

    [15]

    Colagrossi A, Landrini M 2003 J. Comput. Phy. 191 448

    [16]

    Chen Z, Zong Z, Li H T, Li J 2013 Ocean Eng. 59 129

    [17]

    Sun P, Ming F, Zhang A 2015 Ocean Eng. 98 32

    [18]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific)

    [19]

    Hu X Y, Adams N A 2006 J. Comput. Phys. 213 844

    [20]

    Grenier N, Antuono M, Colagrossi A, Le Touzé D, Alessandrini B 2009 J. Comput. Phys. 228 8380

    [21]

    Sun P, Ming F, Zhang A, Yao X 2014 Proceedings of the 33rd International Conference on Ocean, Offshore and Arctic Engineering San Francisco June 8-14 2014

    [22]

    Szewc K, Pozorski J, Minier J P 2013 Int. J. Multiphas. Flow 50 98

    [23]

    Ji B, Luo X W, Wu Y L, Peng X X, Duan Y L 2013 Int. J. Multiphas. Flow 51 33

    [24]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [25]

    Zainali A, Tofighi N, Shadloo M S, Yildiz M 2013 Comput. Method Appl. M. 254 99

    [26]

    Hysing S, Turek S, Kuzmin D, Parolini N, Burman E, Ganesan S, Tobiska L 2009 Int. J. Numer. Meth. Fl. 60 1259

    [27]

    Colagrossi A, Antuono M, Souto-Iglesias A, Le Touzé D 2011 Phys. Rev. E 84 026705

    [28]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [29]

    Monaghan J J 1994 J. Comput. Phys. 110 399

    [30]

    Colagrossi A, Bouscasse B, Antuono M, Marrone S 2012 Comput. Phys. Commun. 183 1641

    [31]

    Marrone S, Colagrossi A, Antuono M, Colicchio G, Graziani G 2013 J. Comput. Phys. 245 456

    [32]

    Chen Z, Zong Z, Liu M B, Zou L, Li H T, Shu C 2015 J. Comput. Phys. 283 169

    [33]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 物理学报 61 224701]

    [34]

    Jin H B, Ding X 2005 J. Comput. Phys. 202 699

    [35]

    Molteni D, Colagrossi A 2009 Comput. Phys. Commun. 180 861

    [36]

    Shepard D 1968 Proceedings of the 23rd ACM national conference: ACM 517

    [37]

    Monaghan J, Gingold R 1983 J. Comput. Phys. 52 374

    [38]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [39]

    Adami S, Hu X Y, Adams N A 2010 J. Comput. Phys. 229 5011

    [40]

    Grenier N, Le Touzé D, Colagrossi A, Antuono M, Colicchio G 2013 Ocean Eng. 69 88

    [41]

    Zhang A M, Cao X Y, Ming F R, Zhang Z F 2013 Appl. Ocean Res. 42 24

    [42]

    Chen R, Tian W, Su G, Qiu S, Ishiwatari Y, Oka Y 2011 Chem. Eng. Sci. 66 5055

    [43]

    Marrone S 2012 Ph. D. Dissertation (Rome: University Of Rome)

  • [1] 张超, 布龙祥, 张智超, 樊朝霞, 凡凤仙. 丁二酸-水纳米气溶胶液滴表面张力的分子动力学研究. 物理学报, 2023, 72(11): 114701. doi: 10.7498/aps.72.20222371
    [2] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [3] 沈婉萍, 尤仕佳, 毛鸿. 夸克介子模型的相图和表面张力. 物理学报, 2019, 68(18): 181101. doi: 10.7498/aps.68.20190798
    [4] 杨秀峰, 刘谋斌. 瑞利-泰勒不稳定问题的光滑粒子法模拟研究. 物理学报, 2017, 66(16): 164701. doi: 10.7498/aps.66.164701
    [5] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [6] 白玲, 李大鸣, 李彦卿, 王志超, 李杨杨. 基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究. 物理学报, 2015, 64(11): 114701. doi: 10.7498/aps.64.114701
    [7] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [8] 李帅, 孙龙泉, 张阿漫. 水中上浮气泡动态特性研究. 物理学报, 2014, 63(18): 184701. doi: 10.7498/aps.63.184701
    [9] 雷娟棉, 黄灿. 一种改进的光滑粒子流体动力学前处理方法. 物理学报, 2014, 63(14): 144702. doi: 10.7498/aps.63.144702
    [10] 李源, 罗喜胜. 黏性、表面张力和磁场对Rayleigh-Taylor不稳定性气泡演化影响的理论分析. 物理学报, 2014, 63(8): 085203. doi: 10.7498/aps.63.085203
    [11] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [12] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [13] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [14] 刘汉涛, 刘谋斌, 常建忠, 苏铁熊. 介观尺度通道内多相流动的耗散粒子动力学模拟. 物理学报, 2013, 62(6): 064705. doi: 10.7498/aps.62.064705
    [15] 强洪夫, 石超, 陈福振, 韩亚伟. 基于大密度差多相流SPH方法的二维液滴碰撞数值模拟. 物理学报, 2013, 62(21): 214701. doi: 10.7498/aps.62.214701
    [16] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [17] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟. 物理学报, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [18] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [19] 常建忠, 刘谋斌, 刘汉涛. 微液滴动力学特性的耗散粒子动力学模拟. 物理学报, 2008, 57(7): 3954-3961. doi: 10.7498/aps.57.3954
    [20] 张蜡宝, 代富平, 熊予莹, 魏炳波. 深过冷Ni-15%Sn合金熔体表面张力研究. 物理学报, 2006, 55(1): 419-423. doi: 10.7498/aps.55.419
计量
  • 文章访问数:  6707
  • PDF下载量:  374
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-09
  • 修回日期:  2015-03-30
  • 刊出日期:  2015-09-05

/

返回文章
返回