搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟

强洪夫 刘开 陈福振

引用本文:
Citation:

液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟

强洪夫, 刘开, 陈福振

Numerical implementation of deformation and motion of droplet at the interface between vapor and solid surface with smoothed particle hydrodynamics methodology

Qiang Hong-Fu, Liu Kai, Chen Fu-Zhen
PDF
导出引用
  • 为准确模拟液滴在气固交界面变形移动问题, 对基于连续表面张力模型的表面张力光滑粒子流体动力学方法进行了改进. 改进方法采用新的边界处理方式和界面法向修正方法,即将固体边界虚粒子色函数值根据液面的位置 进行相应设定以保证气-液-固三相交界处流体粒子的界面法向沿接触线法线方向, 引入Brackbill提出的壁面附着力边界条件处理方法,对在气-液-固三相交界处的流体粒子及部分固体边界 虚粒子的界面法向进行修正,修正前后保持法向模值不变,得到了含壁面附着力边界条件的表面张力算法. 模拟了受壁面附着力影响的水槽中液面的变化过程、液滴润湿壁面过程和剪切气流驱动液滴在固体表面 变形脱落过程,并与流体体积函数方法进行了对比.结果表明,该方法在处理壁面附着力问题时精度较高, 稳定性较好,适合处理工程中液滴在气固交界面变形移动问题.
    In order to simulate the deformation and motion of droplet at the interface between vapor and solid surface, the smoothed particle hydrodynamics method with continuum surface force model for surface tension is modified in this paper. A surface tension algorithm with boundary conditions of wall adhesion is derived using a new treatment of boundary conditions and a corrective algorithm of particle interface normal. The colours of virtual solid particles are set according to the position of fluid surface to assure that the interface normal of particles at the junction of vapor, fluid and solid phase is normal to the contact line. By introducing Brackbill's treatment of boundary conditions of wall adhesion, the interface normal between fluid particles and some virtual solid particles at the junction of vapor, fluid and solid phase is corrected. However the module of the interface normal is kept constant. Finally, based on the new algorithm, the changing process of fluid surface in a tank, wetting process of a droplet and distortion process of a droplet on solid surface driven by shear flow are simulated. The results are compared with those obtained by volume of fluid method, showing that the new method has higher accuracy and better stability, and it is adapted to deal with the engineering problems such as the deformation and motion of droplets at the interface between vapor and solid surface.
    • 基金项目: 国家重点基础研究发展计划(批准号: 973-61338)和第二炮兵工程学院创新性探索研究项目(批准号: EPXY0806)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 973-61338) and the Innovative Research Project of the Second Artillery Engineering University, China (Grant No. EPXY0806).
    [1]

    Tseng Y T, Tseng F G, Chen Y F, Cheng C C 2004 Sensor. Actuat. A: Phys. 114 292

    [2]

    Daniel S, Sircar S, Gliem J, Chaudhury M K 2002 Langmuir 18 3404

    [3]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [4]

    Liu J, Koshizuka S, Oka Y 2005 J. Comput. Phys. 202 65

    [5]

    Wang F, He F 2006 Acta Phys. Sin. 55 1005 (in Chinese) [王飞, 何枫 2006 物理学报 55 1005]

    [6]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comput. Met. 8 637

    [7]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [8]

    Zhang M K, Chen S, Shang Z 2010 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2010 物理学报 61 034701]

    [9]

    Fang H S, Bao K, Wei J A, Zhang H, Wu E H, Zheng L L 2009 Numer. Heat. Tr. A: Appl. 55 124

    [10]

    Bao K, Zhang H, Zheng L L, Wu E H 2009 Comput. Animat. Virt. W 20 311

    [11]

    Morris J P 2000 Int. J. Numer. Methods Fluids 33 333

    [12]

    Liu M B, Liu G R, Lam K Y 2003 Int. J. Comput. Eng. Sci. 4 405

    [13]

    Liu M B, Liu G R 2005 J. Comput. Mech. 35 332

    [14]

    Qiang H F, Chen F Z, Gao W R 2011 China J. Comput. Phys. 28 375 (in Chinese) [强洪夫, 陈福振, 高巍然 2011 计算物理 28 375]

    [15]

    Qiang H F, Chen F Z, Gao W R 2011 Comput. Model. Eng. 77 239

    [16]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [17]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific) p132

    [18]

    Ott F, Schnetter E 2003 ArXiv: Physics/0303112v3 [physics. comp-ph]

    [19]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [20]

    Gray J P, Monaghan J J, Swift R P 2001 Comput. Methods Appl. Mech. Eng. 190 6641

    [21]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [22]

    Cao X P, Jiang Y M 2005 Acta Phys. Sin. 54 2202 (in Chinese) [曹晓平, 蒋亦民 2005 物理学报 54 2202]

    [23]

    Fan J, Hu C B, Zhang Y L, He G Q 2011 J. Exp. Fluid. Mech. 25 5 (in Chinese) [范健, 胡春波, 张育林, 何国强 2011 实验流体力学 25 5]

  • [1]

    Tseng Y T, Tseng F G, Chen Y F, Cheng C C 2004 Sensor. Actuat. A: Phys. 114 292

    [2]

    Daniel S, Sircar S, Gliem J, Chaudhury M K 2002 Langmuir 18 3404

    [3]

    Brackbill J U, Kothe D B, Zemach C 1992 J. Comput. Phys. 100 335

    [4]

    Liu J, Koshizuka S, Oka Y 2005 J. Comput. Phys. 202 65

    [5]

    Wang F, He F 2006 Acta Phys. Sin. 55 1005 (in Chinese) [王飞, 何枫 2006 物理学报 55 1005]

    [6]

    Liu M B, Chang J Z, Liu H T, Su T X 2011 Int. J. Comput. Met. 8 637

    [7]

    Chang J Z, Liu M B, Liu H T 2008 Acta Phys. Sin. 57 3954 (in Chinese) [常建忠, 刘谋斌, 刘汉涛 2008 物理学报 57 3954]

    [8]

    Zhang M K, Chen S, Shang Z 2010 Acta Phys. Sin. 61 034701 (in Chinese) [张明焜, 陈硕, 尚智 2010 物理学报 61 034701]

    [9]

    Fang H S, Bao K, Wei J A, Zhang H, Wu E H, Zheng L L 2009 Numer. Heat. Tr. A: Appl. 55 124

    [10]

    Bao K, Zhang H, Zheng L L, Wu E H 2009 Comput. Animat. Virt. W 20 311

    [11]

    Morris J P 2000 Int. J. Numer. Methods Fluids 33 333

    [12]

    Liu M B, Liu G R, Lam K Y 2003 Int. J. Comput. Eng. Sci. 4 405

    [13]

    Liu M B, Liu G R 2005 J. Comput. Mech. 35 332

    [14]

    Qiang H F, Chen F Z, Gao W R 2011 China J. Comput. Phys. 28 375 (in Chinese) [强洪夫, 陈福振, 高巍然 2011 计算物理 28 375]

    [15]

    Qiang H F, Chen F Z, Gao W R 2011 Comput. Model. Eng. 77 239

    [16]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [17]

    Liu G R, Liu M B 2003 Smoothed Particle Hydrodynamics: A Meshfree Particle Method (Singapore: World Scientific) p132

    [18]

    Ott F, Schnetter E 2003 ArXiv: Physics/0303112v3 [physics. comp-ph]

    [19]

    Morris J P, Fox P J, Zhu Y 1997 J. Comput. Phys. 136 214

    [20]

    Gray J P, Monaghan J J, Swift R P 2001 Comput. Methods Appl. Mech. Eng. 190 6641

    [21]

    Monaghan J J 1989 J. Comput. Phys. 82 1

    [22]

    Cao X P, Jiang Y M 2005 Acta Phys. Sin. 54 2202 (in Chinese) [曹晓平, 蒋亦民 2005 物理学报 54 2202]

    [23]

    Fan J, Hu C B, Zhang Y L, He G Q 2011 J. Exp. Fluid. Mech. 25 5 (in Chinese) [范健, 胡春波, 张育林, 何国强 2011 实验流体力学 25 5]

计量
  • 文章访问数:  2982
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-05
  • 修回日期:  2012-06-26
  • 刊出日期:  2012-10-05

液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟

  • 1. 第二炮兵工程大学601室, 西安 710025
    基金项目: 

    国家重点基础研究发展计划(批准号: 973-61338)和第二炮兵工程学院创新性探索研究项目(批准号: EPXY0806)资助的课题.

摘要: 为准确模拟液滴在气固交界面变形移动问题, 对基于连续表面张力模型的表面张力光滑粒子流体动力学方法进行了改进. 改进方法采用新的边界处理方式和界面法向修正方法,即将固体边界虚粒子色函数值根据液面的位置 进行相应设定以保证气-液-固三相交界处流体粒子的界面法向沿接触线法线方向, 引入Brackbill提出的壁面附着力边界条件处理方法,对在气-液-固三相交界处的流体粒子及部分固体边界 虚粒子的界面法向进行修正,修正前后保持法向模值不变,得到了含壁面附着力边界条件的表面张力算法. 模拟了受壁面附着力影响的水槽中液面的变化过程、液滴润湿壁面过程和剪切气流驱动液滴在固体表面 变形脱落过程,并与流体体积函数方法进行了对比.结果表明,该方法在处理壁面附着力问题时精度较高, 稳定性较好,适合处理工程中液滴在气固交界面变形移动问题.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回