搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

容器内角处流体界面特性与Surface Evolver程序适用性的研究

徐升华 王林伟 孙祉伟 王彩霞

引用本文:
Citation:

容器内角处流体界面特性与Surface Evolver程序适用性的研究

徐升华, 王林伟, 孙祉伟, 王彩霞

The study on the mechanism of liquid surface in interior corner and the applicability of Surface Evolver

Xu Sheng-Hua, Wang Lin-Wei, Sun Zhi-Wei, Wang Cai-Xia
PDF
导出引用
  • 微重力条件下内角处液体行为的研究对于认识表面张力主导的液体行为, 预测和控制空间微重力条件下的液体位置、瞬时状态, 以及对空间流体进行有效的管理等方面都非常重要. 通过分析接触角与流体界面在容器内角处的接触线方向之间的关系, 并与Concus-Finn理论进行比较, 提出了内角处接触线、接触角和几何形状之间相互关联的机理, 并探讨了Concus和Finn等 的相关理论结果的物理内涵. 在此基础上, 进一步将内角处的相关理论结果与Surface Evolver程序得出的数值结果进行了比较, 指出当容器中的内角小于180°时, Surface Evolver程序通过自动划分网格即可比较准确地预言内角处的接触线和液面行为, 但是当内角大于180°时, 自动划分网格得到的数值结果有较大的误差, 需要通过手动划分网格减少网格奇异才能减小误差. 因此, 对于具有复杂几何形状的容器, 需注意网格的奇异性, 并对内角处的液面进行定量的验证, 才能有效判断Surface Evolver程序结果的正确性. 本工作对于深入认识内角处的液面特性和机理, 理解Surface Evolver程序的适用条件, 以及分析微重力条件下容器内角处的液体行为等方面都具有明显意义.
    The study on the fluid behavior under microgravity condition is of great importance for the investigation of the fluid behavior caused by surface tension, the prediction and control of the liquid location at microgravity, the fluid management in space, etc. In this study, we analyze the relationship between the contact angle and the direction of the contact line in interior corner of container, and compare it with the Concus-Finn theory. The mechanism of mutual correlation among the direction of contact line, the contact angle and the geometric shape of container, and the physical meaning of relevant theory by Concus and Finn etc. are also analyzed. By comparing the theoretical results with the numerical results calculated by Surface Evolver, we find that the Surface Evolver program can predict the contact line and the liquid surface in interior corner with angle smaller than 180°, simply by the automatically partitioned grid. However, when the angle of the interior corner is larger than 180°, the results given by Surface Evolver can have a remarkable error with the automatically partitioned grid. In order to reduce the error, it is necessary to manually partition the surface to reduce the singularity of grid. And the results from Surface Evolver should be tested quantitatively at the interior corners for complicated containers. The theoretical analysis and the numerical results calculated by Surface Evolver in this study will be helpful for understanding the characteristics and mechanism of liquid surface in interior corner, choosing the applicable parameters for Surface Evolver program, and the future study on the behavior of liquid in interior corner, especially under microgravity condition.
    • 基金项目: 国家自然科学基金(批准号: 11032011, 11172302)和中国科学院创新工程(批准号: KJCX2-YW-L08)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11032011, 11172302) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-L08).
    [1]

    Ostrach S 1982 Ann. Rev. Fluid Mech. 14 313

    [2]

    Stange M, Dreyer M E, Rath H J 2003 Phys. Fluids 15 2587

    [3]

    Finn R 1999 Not. AMS 46 770

    [4]

    Young T 1805 Philos. Trans. R. Soc. London 95 65

    [5]

    Liu Y X, German R M 1996 Acta Mater. 44 1657

    [6]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 AIAA J. 47 2642

    [7]

    Weislogel M M, Lichter S 1998 J. Fluid Mech. 373 349

    [8]

    Chen Y K, Collicott S H 2004 AIAA J. 42 305

    [9]

    Bolleddula D A, Chen Y K, Semerjian B, Weislogel M M 2010 Microgravity Sci. Technol. 22 475

    [10]

    Concus P, Finn R 1969 Appl. Math. Sci. 63 292

    [11]

    Concus P, Finn R 1974 Acta Math. 132 177

    [12]

    Simon L 1980 Pacific J. Math. 88 363

    [13]

    Tam L F 1986 Pacific J. Math. 124 469

    [14]

    Shi D Z 2006 Pacific J. Math. 224 321

    [15]

    Lancaster K, Athanassenas M 2008 Pacific J. Math. 234 201

    [16]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Transer 53 1801

    [17]

    Concus P, Finn R, Weislogel M 2000 Exp. Fluids 28 197

    [18]

    Xu S H, Wang C X, Sun Z W, Hu W R 2011 Int. J. Heat Mass Transfer 54 2222

    [19]

    Brakke K A 1992 Exp. Math. 1 141

    [20]

    Huang J, Sun Q C 2007 Acta Phys. Sin. 56 6124 (in Chinese) [黄晋, 孙其诚 2007 物理学报 56 6124]

    [21]

    Zhou X H, Zhang S G, Yang J Q, Qu X M, Liu Y S, Wang S G 2007 Acta Phys. Sin. 56 6137 (in Chinese) [周晓华, 张劭光,杨继庆,屈学民, 刘渊声,王斯刚 2007 物理学报 56 6137]

    [22]

    Wearire D, Mcuurry S 1996 Solid State Phys. 50 1

    [23]

    Zhou X H 2010 Chin. Phys. B 19 058702

    [24]

    Brakke K A 1996 Philos. Trans. R. Soc. A 354 2143

    [25]

    Weislogel M M, Jenson R, Chen Y K, Collicott S H, Klatte J, Dreyer M 2009 Acta Astronat. 65 861

    [26]

    Kamali M E, Schotté J S, Ohayon R 2010 Comput. Mech. 46 169

  • [1]

    Ostrach S 1982 Ann. Rev. Fluid Mech. 14 313

    [2]

    Stange M, Dreyer M E, Rath H J 2003 Phys. Fluids 15 2587

    [3]

    Finn R 1999 Not. AMS 46 770

    [4]

    Young T 1805 Philos. Trans. R. Soc. London 95 65

    [5]

    Liu Y X, German R M 1996 Acta Mater. 44 1657

    [6]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 AIAA J. 47 2642

    [7]

    Weislogel M M, Lichter S 1998 J. Fluid Mech. 373 349

    [8]

    Chen Y K, Collicott S H 2004 AIAA J. 42 305

    [9]

    Bolleddula D A, Chen Y K, Semerjian B, Weislogel M M 2010 Microgravity Sci. Technol. 22 475

    [10]

    Concus P, Finn R 1969 Appl. Math. Sci. 63 292

    [11]

    Concus P, Finn R 1974 Acta Math. 132 177

    [12]

    Simon L 1980 Pacific J. Math. 88 363

    [13]

    Tam L F 1986 Pacific J. Math. 124 469

    [14]

    Shi D Z 2006 Pacific J. Math. 224 321

    [15]

    Lancaster K, Athanassenas M 2008 Pacific J. Math. 234 201

    [16]

    Wang C X, Xu S H, Sun Z W, Hu W R 2010 Int. J. Heat Mass Transer 53 1801

    [17]

    Concus P, Finn R, Weislogel M 2000 Exp. Fluids 28 197

    [18]

    Xu S H, Wang C X, Sun Z W, Hu W R 2011 Int. J. Heat Mass Transfer 54 2222

    [19]

    Brakke K A 1992 Exp. Math. 1 141

    [20]

    Huang J, Sun Q C 2007 Acta Phys. Sin. 56 6124 (in Chinese) [黄晋, 孙其诚 2007 物理学报 56 6124]

    [21]

    Zhou X H, Zhang S G, Yang J Q, Qu X M, Liu Y S, Wang S G 2007 Acta Phys. Sin. 56 6137 (in Chinese) [周晓华, 张劭光,杨继庆,屈学民, 刘渊声,王斯刚 2007 物理学报 56 6137]

    [22]

    Wearire D, Mcuurry S 1996 Solid State Phys. 50 1

    [23]

    Zhou X H 2010 Chin. Phys. B 19 058702

    [24]

    Brakke K A 1996 Philos. Trans. R. Soc. A 354 2143

    [25]

    Weislogel M M, Jenson R, Chen Y K, Collicott S H, Klatte J, Dreyer M 2009 Acta Astronat. 65 861

    [26]

    Kamali M E, Schotté J S, Ohayon R 2010 Comput. Mech. 46 169

  • [1] 刘乔, 黄家宸, 王昊, 邓亚骏. 前进接触线薄液膜结构与运移机制. 物理学报, 2024, 73(1): 016801. doi: 10.7498/aps.73.20231296
    [2] 叶学民, 张湘珊, 李明兰, 李春曦. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018, 67(18): 184704. doi: 10.7498/aps.67.20180660
    [3] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [4] 崔树稳, 朱如曾, 魏久安, 王小松, 杨洪秀, 徐升华, 孙祉伟. 纳观接触角的确定方法. 物理学报, 2015, 64(11): 116802. doi: 10.7498/aps.64.116802
    [5] 周建臣, 耿兴国, 林可君, 张永建, 臧渡洋. 微液滴在超疏水表面的受迫振动及其接触线的固着-移动转变. 物理学报, 2014, 63(21): 216801. doi: 10.7498/aps.63.216801
    [6] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [7] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [8] 李永强, 刘玲, 张晨辉, 段俐, 康琦. 微重力环境下无限长柱体内角毛细流动解析近似解研究. 物理学报, 2013, 62(2): 024701. doi: 10.7498/aps.62.024701
    [9] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [10] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [11] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟. 物理学报, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [12] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [13] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [14] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [15] 王小松, 朱如曾. 固液黏着功的Berthelot平均规则的推广及应用. 物理学报, 2010, 59(11): 8010-8014. doi: 10.7498/aps.59.8010
    [16] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [17] 周晓华, 张劭光, 杨继庆, 屈学民, 刘渊声, 王斯刚. 基于自发曲率模型对几种极限形状膜泡及典型相变和分裂过程的研究. 物理学报, 2007, 56(10): 6137-6142. doi: 10.7498/aps.56.6137
    [18] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用. 物理学报, 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [19] 周晓华, 张劭光. 球形拓扑中复杂形状生物膜泡的获得及其稳定性分析. 物理学报, 2006, 55(10): 5568-5574. doi: 10.7498/aps.55.5568
    [20] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
计量
  • 文章访问数:  7275
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-11
  • 修回日期:  2012-01-17
  • 刊出日期:  2012-08-05

/

返回文章
返回