-
在通过引入精确差分方法的单组分多相格子Boltzmann模型的基础上耦合能量方程,并考虑流体与固壁间的相互作用力来调节气泡与固壁间的接触角,从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 为验证该模型的正确性,利用其对工质为水的相变过程进行了模拟,发现模拟结果与实验值符合良好;进而利用其验证Laplace定律,发现计算所得的水的表面张力与实验值甚为符合. 为考察该模型处理复杂相变问题的能力,利用其对工质为水的池沸腾中的气泡生长过程进行模拟,发现气泡脱离直径与g-0
-
关键词:
- 格子Boltzmann方法 /
- 池沸腾 /
- 气泡生长过程 /
- 接触角
In this paper, a new single-component lattice Boltzmann model, which is based on exact difference method and extended with an energy transfer equation to model heat transfer, is proposed to describe liquid-vapor phase transition process. The wettability of the heated wall is modeled by an interaction force between solid wall and fluid. This new model is validated through the simulation of water phase transition process. It is found that the simulation results are in good agreement with the experimental data. The surface tension of water, which is obtained from simulation results at different temperatures, is closed to experimental data. These results are in agree ment with those obtained from Laplace law. In order to demonstrate the availability of this model for dealing with phase transition and two-phase problems, the bubble growth process on a heated surface is simulated in pool boiling. It is found that the bubble departure diameter is proportional to g-0.5 and the release frequency scales with g0.75, where g is the gravitational acceleration. These results are in good agreement with those obtained from the empirical relationship and reference results. Finally, simulation results show no relationship between the bubble departure diameter and the static contact angle, but the bubble release frequency increases exponentially with the latter.-
Keywords:
- lattice Boltzmann method /
- pool boiling /
- bubble growth process /
- contact angle
[1] Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071
[2] Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237
[3] Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480
[4] Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1
[5] Dhir V K 2006 J. Heat Transfer. 128 1
[6] Chester A K 1977 J. Fluid Mech. 81 609
[7] Fritz W 1935 Phys. Z. 36 379
[8] Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66
[9] Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947
[10] Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127
[11] Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257
[12] Dhir V K 2001 AIChE J. 47 813
[13] Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909
[14] Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51
[15] Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]
[16] Bruce J P, David R R 2000 Phys. Rev. E 61 5295
[17] Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98
[18] Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703
[19] Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472
[20] Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]
[21] Martys N S, Chen H D 1996 Phys. Rev. E 53 743
[22] Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]
[23] Zuber N 1963 Int. J. Heat Mass Transfer 6 53
[24] Shan X W, Chen H D 1993 Phys. Rev. E 47 1815
[25] Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1
[26] Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241
[27] Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1
[28] PengY, Schaefer L 2006 Phys. Fluids 18 1
[29] Qin R S 2007 J. Chem. Phys. 126 114506
[30] Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]
[31] Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]
[32] Sukop M C, Or D 2005 Phys. Rev. E 71 046703
[33] Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56
[34] Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675
[35] Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409
[36] Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203
[37] Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269
-
[1] Hepworth N J, Boyd J W R, Hammond J R M, Varley J 2003 Chem. Eng. Sci. 58 4071
[2] Barbulovic-Nad I, Lucente M, Sun Y, Zhang M J, Wheeler A R, Bussmann M 2006 Crit. Rev. Biotech. 26 237
[3] Bolognesi A, Mercogliano C, Yunnus S, Civardi M, Comoretto D, Turturro A 2005 Langmuir 21 3480
[4] Bestion D, Anglart H, Caraghiaur D, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1
[5] Dhir V K 2006 J. Heat Transfer. 128 1
[6] Chester A K 1977 J. Fluid Mech. 81 609
[7] Fritz W 1935 Phys. Z. 36 379
[8] Arlabosse P, Tadrist L, Tadrist H, Pantaloni J 2000 Trans. ASME 122 66
[9] Warrier G R, Basu N, Dhir V K 2002 Int. J. Heat Mass Transfer 45 3947
[10] Mukherjee A, Kandlikar S G 2007 Int. J. Heat Mass Transfer 50 127
[11] Fuchs T, Kern J, Stephan P 2006 J. Heat Transfer 128 1257
[12] Dhir V K 2001 AIChE J. 47 813
[13] Mei R W, Chen W, Klausner J 1995 Int. J. Heat Mass Transfer 38 909
[14] Son G, Ramanujapu N, Dhir V K 2002 J. Heat Transfer 124 51
[15] Guo Z L, Zheng C G 2008 Theory and Application of Lattice Boltzmann Method (Beijing: Science Press) p76 (in Chinese) [郭照立、郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]
[16] Bruce J P, David R R 2000 Phys. Rev. E 61 5295
[17] Tentner A, Chen H D, Zhang R Y 2006 Phys. A 362 98
[18] Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703
[19] Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472
[20] Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦、李隆键、廖 全、陈清华、崔文智、潘良明 2010 物理学报 59 178]
[21] Martys N S, Chen H D 1996 Phys. Rev. E 53 743
[22] Xin M D 1987 Boiling Heat Transfer and Enhanced Boiling Heat Transfer (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆:重庆大学出版社) 第55页]
[23] Zuber N 1963 Int. J. Heat Mass Transfer 6 53
[24] Shan X W, Chen H D 1993 Phys. Rev. E 47 1815
[25] Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci. Bull. 54 1
[26] Kupershtokh A L 2004 in: Proceedings of the 5th International Electrostatique Workshop August30—31,2004 Poitiers-France 241
[27] Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1
[28] PengY, Schaefer L 2006 Phys. Fluids 18 1
[29] Qin R S 2007 J. Chem. Phys. 126 114506
[30] Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭、陶文铨 1998 传热学(北京: 高等教育出版社) 第218页]
[31] Shen W D, Jiang Z M, Tong J G 2001 Engineer Thermodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道、蒋智敏、童均耕 2001 工程热力学 (北京: 高等教育出版社)第413页]
[32] Sukop M C, Or D 2005 Phys. Rev. E 71 046703
[33] Peng Y 2005 Ph. D. Dissertation (Pittsburg: University of Pittsburg) p56
[34] Haider S I, Webb R L 1997 Int. J. Heat Mass Transfer 40 3675
[35] Buyevich Y A, Werbon B W 1996 Int. J. Heat Mass Transfer 39 2409
[36] Yang C X, Wu Y T, Yuan X G, Ma C F 2000 Int. J. Heat Mass Transfer 43 203
[37] Kim J, Kim M H 2006 Int. J. Multiphase Flow 32 1269
计量
- 文章访问数: 10881
- PDF下载量: 946
- 被引次数: 0