搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气泡成核过程的格子Boltzmann方法模拟

曾建邦 李隆键 蒋方明

引用本文:
Citation:

气泡成核过程的格子Boltzmann方法模拟

曾建邦, 李隆键, 蒋方明

Numerical investigation of bubble nucleation process using the lattice Boltzmann method

Zeng Jian-Bang, Li Long-Jian, Jiang Fang-Ming
PDF
导出引用
  • 利用精确差分格子Boltzmann模型探讨水在特定温度下的亚稳态及不稳定平衡态, 获得等温相变过程中形成气泡和液滴的条件, 模型预测结果与理论解符合良好. 在该等温模型的基础上耦合能量方程, 通过调节流体-壁面相互作用力获得不同的气泡与固壁间接触角, 从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 利用该新模型模拟不同流体-壁面相互作用力下凹坑气泡成核过程, 再现了气泡成核过程中的三阶段特性; 探讨了接触角、曲率半径及气泡体积随气泡成核过程的变化关系, 获得了与文献结果定性符合的曲率-气泡体积关系曲线.
    In this paper, the state of metastable equilibrium and the state of unstable equilibrium of water at a certain temperature are explored using an exact difference lattice Boltzmann model and the conditions of bubble (droplet) formation are investigated in the isothermal phase transition processes. From these simulation results, it is found that the model predictions are in good agreement with analytical results. Based on these works, a new model, which is based on exact difference lattice Boltzmann model and extended with an energy transfer equation to model heat transfer, is proposed to describe liquid-vapor phase transition process. The effects of the wall-fluid interaction strength on the bubble nucleation process in a pit are investigated using this new heterogeneous phase transition model. Simulation results accurately reproduce the characteristics of three stages of the bubble nucleation process. The changes of the contact angle, curvature radius, and volume with the bubble nucleation process are explored, and the relationship curve between curvature and bubble volume from the simulations is in qualitative agreement with the previous results.
    • 基金项目: 国家自然科学青年基金(批准号: 51206171);国家自然科学基金(批准号: 51076172);中国科学院广州能源研究所所长创新基金(批准号: y207r31001)和中国科学院"百人计划"资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51206171), the National Natural Science Foundation of China (Grant No. 51076172), the Director Innovation Foundation of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (Grant No. y207r31001), and the CAS "100 Talents" Plan.
    [1]

    Xu J Y 2011 Boiling Heat Transfer and gas-liquid two phase flow (Beijing: Atomic Energy Press) p211 (in Chinese) [徐济鋆 2001 沸腾传热和气液两相流 (北京: 原子能出版社) 第211页]

    [2]

    Bestion D, Anglart H, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [3]

    Xin M D 1987 Boiling Heat Transfer and Heat Transfer enhancement (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆: 重庆大学出版社) 第55页]

    [4]

    Clark H B, Strenge P S, Westwater J W 1959 Chem. Eng. Progress Symp. 55 103

    [5]

    Bankoff S G 1958 AICHE J. 4 24

    [6]

    Griffith P, Wallis J D 1960 Chem. Eng. Prog. Symp. 30 7673

    [7]

    Sato T, Matsumura H 1964 Bulletin of JSME 7 392

    [8]

    Davis E J, Anderson G H 1966 AICHE Journa 12 774

    [9]

    Lorenz J J, Mikic B B, Rohsenow, Warren M 1971 M.I.T Engineering Projects Laboratory 14091243 29

    [10]

    Wang C H, Dhir V K 1993 J. Heat Transfer 115 659

    [11]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [12]

    Judd R L, Hwang K S 1976 Heat Transfer 88 623

    [13]

    Dhir V K 1991 Int. J. Heat Fluid Flow 12 290

    [14]

    Kenning D B R, Yan Y Y 1996 Int. J. Heat Mass Transfer 39 3117

    [15]

    Zhang L, Shoji M 2003 Int. J. Heat Mass Transfer 46 513

    [16]

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p76 (In Chinese) [郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [17]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [18]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [19]

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8406 (in Chinese) [张新明, 周超英, Islam Shams, 刘家琦 2009 物理学报 58 8406]

    [20]

    Zeng J B, Li L J, Liao Q, Huang Y P, Pan L M 2010 Chin. Sci Bull. 55 3267

    [21]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [22]

    Tentner A, Chen H D, Zhang R Y 2006 Physica A 362 98

    [23]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [24]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [25]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [26]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [27]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci Bull. 54 1

    [28]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 物理学报 59 178]

    [29]

    Zeng J B, Li L J, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 蒋方明 2011 物理学报 60 066401]

    [30]

    Kupershtokh A L 2004 Proceedings of the 5th International Electrostatique Workshop August 30-31, 2004 Poitiers-France 241

    [31]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [32]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 1

    [33]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [34]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭, 陶文铨 1998 传热学 (北京: 高等出版社) 第218页]

    [35]

    Shen W D, Jiang Z M, Tong J G 2001 Higher Engineering Theormodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道, 蒋智敏, 童钧耕 2001 高等工程热力学 (北京: 高等教育出版社) 第413页]

    [36]

    Yuan P 2005 Ph.D. Dissertation (Pittsburg: University of Pittsburg) p56

  • [1]

    Xu J Y 2011 Boiling Heat Transfer and gas-liquid two phase flow (Beijing: Atomic Energy Press) p211 (in Chinese) [徐济鋆 2001 沸腾传热和气液两相流 (北京: 原子能出版社) 第211页]

    [2]

    Bestion D, Anglart H, Peteraud P, Smith B, Andreani M, Niceno B, Krepper E, Lucas D, Moretti F, Galassi M C, Macek J, Vyskocil L, Koncar B, Hazi G 2009 Sci. Tech. Nucl. Installa. 214512 1

    [3]

    Xin M D 1987 Boiling Heat Transfer and Heat Transfer enhancement (Chongqing: Chongqing Unversity Press) p55 (in Chinese) [辛明道 1987 沸腾传热及其强化 (重庆: 重庆大学出版社) 第55页]

    [4]

    Clark H B, Strenge P S, Westwater J W 1959 Chem. Eng. Progress Symp. 55 103

    [5]

    Bankoff S G 1958 AICHE J. 4 24

    [6]

    Griffith P, Wallis J D 1960 Chem. Eng. Prog. Symp. 30 7673

    [7]

    Sato T, Matsumura H 1964 Bulletin of JSME 7 392

    [8]

    Davis E J, Anderson G H 1966 AICHE Journa 12 774

    [9]

    Lorenz J J, Mikic B B, Rohsenow, Warren M 1971 M.I.T Engineering Projects Laboratory 14091243 29

    [10]

    Wang C H, Dhir V K 1993 J. Heat Transfer 115 659

    [11]

    Mikic B B, Rohsenow W M 1969 J. Heat Transfer 91 245

    [12]

    Judd R L, Hwang K S 1976 Heat Transfer 88 623

    [13]

    Dhir V K 1991 Int. J. Heat Fluid Flow 12 290

    [14]

    Kenning D B R, Yan Y Y 1996 Int. J. Heat Mass Transfer 39 3117

    [15]

    Zhang L, Shoji M 2003 Int. J. Heat Mass Transfer 46 513

    [16]

    Guo Z L, Zheng C G 2008 Theory and Applications of Lattice Boltzmann Method (Beijing: Science Press) p76 (In Chinese) [郭照立, 郑楚光 2008 格子Boltzmann方法的原理及应用 (北京: 科学出版社) 第76页]

    [17]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [18]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [19]

    Zhang X M, Zhou C Y, Islam S, Liu J Q 2009 Acta Phys. Sin. 58 8406 (in Chinese) [张新明, 周超英, Islam Shams, 刘家琦 2009 物理学报 58 8406]

    [20]

    Zeng J B, Li L J, Liao Q, Huang Y P, Pan L M 2010 Chin. Sci Bull. 55 3267

    [21]

    Bruce J P, David R R 2000 Phys. Rev. E 61 5295

    [22]

    Tentner A, Chen H D, Zhang R Y 2006 Physica A 362 98

    [23]

    Zhang R Y, Chen H D 2003 Phys. Rev. E 67 1

    [24]

    Gonnella G, Lamura A, Sofonea V 2007 Phys. Rev. E 76 036703

    [25]

    Gabor H, Attila M 2009 Int. J. Heat Mass Transfer 52 1472

    [26]

    Shan X W, Chen H D 1993 Phys. Rev. E 47 1815

    [27]

    Zeng J B, Li L J, Liao Q, Cui W Z, Chen Q H, Pan L M 2009 Chin. Sci Bull. 54 1

    [28]

    Zeng J B, Li L J, Liao Q, Chen Q H, Cui W Z, Pan L M 2010 Acta Phys. Sin. 59 178 (in Chinese) [曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明 2010 物理学报 59 178]

    [29]

    Zeng J B, Li L J, Jiang F M 2011 Acta Phys. Sin. 60 066401 (in Chinese) [曾建邦, 李隆键, 蒋方明 2011 物理学报 60 066401]

    [30]

    Kupershtokh A L 2004 Proceedings of the 5th International Electrostatique Workshop August 30-31, 2004 Poitiers-France 241

    [31]

    Martys N S, Chen H D 1996 Phys. Rev. E 53 743

    [32]

    Yuan P, Schaefer L 2006 Phys. Fluids 18 1

    [33]

    Qin R S 2007 J. Chem. Phys. 126 114506

    [34]

    Yang S M, Tao W Q 1998 Heat Transfer (Beijing: Higher Education Press) p218 (in Chinese) [杨世铭, 陶文铨 1998 传热学 (北京: 高等出版社) 第218页]

    [35]

    Shen W D, Jiang Z M, Tong J G 2001 Higher Engineering Theormodynamics (Beijing: Higher Education Press) p413 (in Chinese) [沈维道, 蒋智敏, 童钧耕 2001 高等工程热力学 (北京: 高等教育出版社) 第413页]

    [36]

    Yuan P 2005 Ph.D. Dissertation (Pittsburg: University of Pittsburg) p56

  • [1] 刘高洁, 邵子宇, 娄钦. 多孔介质中含溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2022, 71(5): 054702. doi: 10.7498/aps.71.20211851
    [2] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维汽泡群熟化过程模拟. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212183
    [3] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟. 物理学报, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [4] 刘高洁, 邵子宇, 娄钦. 多孔介质中含有溶解反应的互溶驱替过程格子Boltzmann研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211851
    [5] 尹灵康, 徐顺, Seongmin Jeong, Yongseok Jho, 王健君, 周昕. 广义等温等压系综-分子动力学模拟全原子水的气液共存形貌. 物理学报, 2017, 66(13): 136102. doi: 10.7498/aps.66.136102
    [6] 臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子Boltzmann方法. 物理学报, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [7] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [8] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [9] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [10] 张婷, 施保昌, 柴振华. 多孔介质内溶解与沉淀过程的格子Boltzmann方法模拟. 物理学报, 2015, 64(15): 154701. doi: 10.7498/aps.64.154701
    [11] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [12] 解文军, 滕鹏飞. 声悬浮过程的格子Boltzmann方法研究. 物理学报, 2014, 63(16): 164301. doi: 10.7498/aps.63.164301
    [13] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [14] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [15] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [16] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟. 物理学报, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [17] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [18] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [19] 曾建邦, 李隆键, 廖全, 陈清华, 崔文智, 潘良明. 格子Boltzmann方法在相变过程中的应用. 物理学报, 2010, 59(1): 178-185. doi: 10.7498/aps.59.178
    [20] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
计量
  • 文章访问数:  3771
  • PDF下载量:  918
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-19
  • 修回日期:  2013-05-14
  • 刊出日期:  2013-09-05

气泡成核过程的格子Boltzmann方法模拟

  • 1. 中国科学院广州能源研究所先进能源系统实验室, 中国科学院可再生能源重点实验室, 广州 510640;
  • 2. 重庆大学动力工程学院, 低品位能源利用技术及系统教育部重点实验室, 重庆 400030
    基金项目: 国家自然科学青年基金(批准号: 51206171);国家自然科学基金(批准号: 51076172);中国科学院广州能源研究所所长创新基金(批准号: y207r31001)和中国科学院"百人计划"资助的课题.

摘要: 利用精确差分格子Boltzmann模型探讨水在特定温度下的亚稳态及不稳定平衡态, 获得等温相变过程中形成气泡和液滴的条件, 模型预测结果与理论解符合良好. 在该等温模型的基础上耦合能量方程, 通过调节流体-壁面相互作用力获得不同的气泡与固壁间接触角, 从而建立了一种新的描述气液相变的格子Boltzmann理论模型. 利用该新模型模拟不同流体-壁面相互作用力下凹坑气泡成核过程, 再现了气泡成核过程中的三阶段特性; 探讨了接触角、曲率半径及气泡体积随气泡成核过程的变化关系, 获得了与文献结果定性符合的曲率-气泡体积关系曲线.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回