-
运用考虑了固体与液体间分子作用力的格子Boltzmann方法,数值研究了由于固液界面上表面张力梯度引起的Marangoni效应驱动的液滴运动.当表面张力梯度较小时,计算结果和前人的理论预测符合较好.而表面张力梯度较大时,由于液滴不变形和准平衡态等假设不再满足,理论预测的液滴运动速度高于数值模拟的结果.计算结果显示,在向亲水端运动过程中液滴内部出现旋涡结构,当润湿性梯度较大时,其前进速度和接触角随时间变化出现振荡.
-
关键词:
- 润湿性 /
- 格子Boltzmann方法 /
- Marangoni效应 /
- 液滴
The lattice Boltzmann method is used to simulate numerically the droplet motion driven by Marangoni effect, which is induced by surface tension gradient on the solid-liquid interface, with the consideration of interaction between solid and liquid molecules. The computation results are well compared with the theoretical prediction available for smaller surface tension gradient, whereas the translation velocity of droplet is smaller than the theoretical value for larger gradient, because some assumptions, such as the quasi-equilibrium and non-deformable droplet, are not satisfied in the theoretical analysis anymore. Vortical structure with a solid-like core is found in the droplet when it moves to the hydrophilic end. The variations of velocity and contact angle of droplet are found to be oscillating with time for larger gradient of wettability.-
Keywords:
- wettability /
- lattice Boltzmann method /
- Marangoni effect /
- droplet
[1] [1]Bain C D, Burnett-Hall G D, Montgonerie R R 1994 Nature 372 414
[2] [2]Mugele F, Baret J C 2005 J. Phys.: Condens. Matter 17 R705
[3] [3]Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977
[4] [4]Wang F, He F 2006 Acta Phys. Sin. 55 1005 [王飞、何枫 2006 物理学报 55 1005]
[5] [5]Zhang X H, Zhang X J, Liu Y H, Schaefer J A, Wen S Z 2007 Acta Phys. Sin. 56 4722 [张晓昊、张向军、刘永和、 Schaefer J A、温诗铸 2007 物理学报 56 4722]
[6] [6]Cassie A B D 1948 Discuss. Faraday Soc. 3 11
[7] [7]Brochard F 1989 Langmuir 5 432
[8] [8]Fabrice D D S, Thierry O 1995 Phys. Rev. Lett. 75 2972
[9] [9]Yeo L Y, Craster R V, Matar O K 2007 J. Colloid Interface Sci. 306 368
[10] ]Martys N S, Chen H 1996 Phys. Rev. E 53 743
[11] ]Raiskinmki P 2000 Comput. Mat. Sci. 18 7
[12] ]Fang H, Wan R, Fan L 2000 Chin. Phys. 9 515
[13] ]Fan L, Fang H, Lin Z 2001 Phys. Rev. E 63 051603
[14] ]Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203
[15] ]Huang J J, Shu C, Chew Y T 2009 Phys. Fluids 21 022103
[16] ]Xing X Q, Butler D L, Yang C 2006 Comp. Math. Sci. 7 1
[17] ]Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041
[18] ]Dupuis A, Yeomans J M 2005 Langmuir 21 2624
[19] ]Zhang J, Li B, Kwok D Y 2004 Phys. Rev. E 69 032602
[20] ]Kawasaki A, Onishi J, Chen Y, Ohashi H 2007 Comp. Math. Appl. 55 1492
[21] ]Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Scientific Press) (in Chinese) [郭照立、郑楚光 2009 格子Boltzmann方法的原理和应用(北京:科学出版社)]
[22] ]Raphal E 1988 C. R. Acad. Sci. Paris 306 751
[23] ]Hu G H, Xu A J, Xu Z, Zhou Z W 2008 Phys. Fluid. 20 102101
[24] ]Koplik J, Banavar J R 2000 Phys. Rev. Lett. 84 4401
-
[1] [1]Bain C D, Burnett-Hall G D, Montgonerie R R 1994 Nature 372 414
[2] [2]Mugele F, Baret J C 2005 J. Phys.: Condens. Matter 17 R705
[3] [3]Squires T M, Quake S R 2005 Rev. Mod. Phys. 77 977
[4] [4]Wang F, He F 2006 Acta Phys. Sin. 55 1005 [王飞、何枫 2006 物理学报 55 1005]
[5] [5]Zhang X H, Zhang X J, Liu Y H, Schaefer J A, Wen S Z 2007 Acta Phys. Sin. 56 4722 [张晓昊、张向军、刘永和、 Schaefer J A、温诗铸 2007 物理学报 56 4722]
[6] [6]Cassie A B D 1948 Discuss. Faraday Soc. 3 11
[7] [7]Brochard F 1989 Langmuir 5 432
[8] [8]Fabrice D D S, Thierry O 1995 Phys. Rev. Lett. 75 2972
[9] [9]Yeo L Y, Craster R V, Matar O K 2007 J. Colloid Interface Sci. 306 368
[10] ]Martys N S, Chen H 1996 Phys. Rev. E 53 743
[11] ]Raiskinmki P 2000 Comput. Mat. Sci. 18 7
[12] ]Fang H, Wan R, Fan L 2000 Chin. Phys. 9 515
[13] ]Fan L, Fang H, Lin Z 2001 Phys. Rev. E 63 051603
[14] ]Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203
[15] ]Huang J J, Shu C, Chew Y T 2009 Phys. Fluids 21 022103
[16] ]Xing X Q, Butler D L, Yang C 2006 Comp. Math. Sci. 7 1
[17] ]Swift M R, Orlandini E, Osborn W R, Yeomans J M 1996 Phys. Rev. E 54 5041
[18] ]Dupuis A, Yeomans J M 2005 Langmuir 21 2624
[19] ]Zhang J, Li B, Kwok D Y 2004 Phys. Rev. E 69 032602
[20] ]Kawasaki A, Onishi J, Chen Y, Ohashi H 2007 Comp. Math. Appl. 55 1492
[21] ]Guo Z L, Zheng C G 2009 Theory and Applications of Lattice Boltzmann Method (Beijing: Scientific Press) (in Chinese) [郭照立、郑楚光 2009 格子Boltzmann方法的原理和应用(北京:科学出版社)]
[22] ]Raphal E 1988 C. R. Acad. Sci. Paris 306 751
[23] ]Hu G H, Xu A J, Xu Z, Zhou Z W 2008 Phys. Fluid. 20 102101
[24] ]Koplik J, Banavar J R 2000 Phys. Rev. Lett. 84 4401
计量
- 文章访问数: 10289
- PDF下载量: 2375
- 被引次数: 0