搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟

刘邱祖 寇子明 贾月梅 吴娟 韩振南 张倩倩

引用本文:
Citation:

改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟

刘邱祖, 寇子明, 贾月梅, 吴娟, 韩振南, 张倩倩

Wettability alteration simulation of modified hydrophobic solid surface by lattice Boltzmann method

Liu Qiu-Zu, Kou Zi-Ming, Jia Yue-Mei, Wu Juan, Han Zhen-Nan, Zhang Qian-Qian
PDF
导出引用
  • 基于疏水固壁改性会引起润湿性反转的特点,采用考虑固体与液体间分子力的格子Boltzmann方法,从壁面的线性和瞬时改性两方面对润湿性反转现象进行了数值模拟,并结合流体体积方法处理界面层质量. 结果表明:壁面线性改性的过程中润湿性反转变化平稳,润湿所需时间大幅减少,所得到的接触角与固液吸引力系数的关系与其他文献结果一致;壁面瞬时改性幅度越大说明固壁对液滴作用力越强,表现为润湿性变化越明显,瞬时改性后接触角随时间呈指数规律变化,这与现有结论相符合. 研究发现:在改性条件下液膜铺展过程中伴随着振荡变化,线性改性的振动峰值与改性幅度相关;瞬时改性的液膜速度会在某一时刻突然增大,这种现象与夹带空气有关.
    Based on the wettability alteration caused by the modified hydrophobic solid surface, the phenomenon of wettability alteration is simulated numerically in terms of linear and instantaneous modification by using the lattice Boltzmann method which can properly reflect the interaction of solid-liquid molecules, combined with the volume of fluid method to dispose the quality of interface layer. Results show that the wettability changes smoothly in the process of linear modification, the time needed for wetting significantly decreases, and the relationship between the contact angle and attractive coefficient of solid-liquid accord well with literature data. The more greatly the amplitude of instantaneous modification changes, the stronger the force of solid acting on droplet is, which is reflected by the obvious change of wettability. It is also found that the contact angle changes exponentially with time after instantaneous modification, which is in good agreement with the existing conclusions. Further investigation shows that the liquid oscillation exists in the whole spreading process. The vibration peak is associated with the modified amplitude of linear modification. And liquid film velocity increases suddenly at sometime after instantaneous modification, which is associated with entrained air.
    • 基金项目: 国家自然科学基金联合基金(批准号:U1261107)资助的课题.
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1261107).
    [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Shen Z Y, He Y 2012 Chin. Phys. Lett. 29 024703

    [3]

    Mahmood R S, Sonia B, Luc G F 2012 Appl. Surf. Sci. 258 6416

    [4]

    Tsekova R, Borissovb D, Karakasheva S I 2013 Colloids Surf. A 423 77

    [5]

    Lee K S, Starov V M 2009 J. Colloid Interf. Sci. 329 3615

    [6]

    Winkels K G, Weijs J H, Eddi A, Snoeijer J H 2012 Phys. Rev. E 85 055301

    [7]

    Beacham D R, Matar O K 2009 Langmuir 25 14174

    [8]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [9]

    Zhu X T, Zhang Z Z, Men X H, Yang J, Xu X H, Zhu X T, Xue Q J 2011 Appl. Surf. Sci. 257 3753

    [10]

    Bi F F, Guo Y L, Shen S Q, Chen J X 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先 2012 物理学报 61 184702]

    [11]

    Yang J, Zhang Z Z, Men X H, Xu X H, Zhu X T 2011 Carbon 49 19

    [12]

    Gao Y F, Sun D Y 2010 Chin. Phys. Lett. 27 066802

    [13]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [14]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [15]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [16]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332

    [17]

    Dupuis A, Yeomans J M 2005 Langmuir 21 2624

    [18]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [19]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 074702

    [20]

    Kawasaki A, Onishi J, Chen Y, Ohashi H 2007 Comp. Math. Appl. 55 1492

    [21]

    Xing X Q, Butler D L, Yang C 2006 Comp. Math. Sci. 7 1

    [22]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [23]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [24]

    Zhang J F, Li B M, Kwok D Y 2004 Phys. Rev. E 69 032602

    [25]

    Ginzburg I, Steiner K 2003 J. Comput. Phys. 185 61

    [26]

    Zhang M L, Hao Z N, Zhang Y P 2013 Acta Oceanol. Sin. 32 38

    [27]

    Ding Q L, Wang D G, Wang L L 2010 Shuili Xuebao 8 991 (in Chinese) [丁全林, 汪德爟, 王玲玲 2010 水利学报 8 991]

    [28]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [29]

    Xiong J B, Seiichi K, Mikio S 2011 J. Nucl. Sci. Technol. 48 145

    [30]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interf. Sci. 144 54

    [31]

    Li H, Zheng M J, Liu S D, Ma L, Zhu C Q, Xiong Z Z 2013 Surf. Coat. Technol. 224 88

    [32]

    Liu S S, Zhang C H, He J G, Zhou J, Yin H Y 2013 Acta Phys. Sin. 62 206201 (in Chinese) [刘思思, 张朝辉, 何建国, 周杰, 尹恒洋 2013 物理学报 62 206201]

    [33]

    Siddhartha F L, Vivek V B, Nigam K D P 2007 Chem. Eng. Sci. 62 7214

    [34]

    Hu G H, Xu A J, Xu Z, Zhou Z W 2008 Phys. Fluids 20 102101

  • [1]

    Sun Z H, Han R J 2008 Chin. Phys. B 17 3185

    [2]

    Shen Z Y, He Y 2012 Chin. Phys. Lett. 29 024703

    [3]

    Mahmood R S, Sonia B, Luc G F 2012 Appl. Surf. Sci. 258 6416

    [4]

    Tsekova R, Borissovb D, Karakasheva S I 2013 Colloids Surf. A 423 77

    [5]

    Lee K S, Starov V M 2009 J. Colloid Interf. Sci. 329 3615

    [6]

    Winkels K G, Weijs J H, Eddi A, Snoeijer J H 2012 Phys. Rev. E 85 055301

    [7]

    Beacham D R, Matar O K 2009 Langmuir 25 14174

    [8]

    Liu S S, Zhang C H, Zhang H B, Zhou J, He J G, Yin H Y 2013 Chin. Phys. B 22 106801

    [9]

    Zhu X T, Zhang Z Z, Men X H, Yang J, Xu X H, Zhu X T, Xue Q J 2011 Appl. Surf. Sci. 257 3753

    [10]

    Bi F F, Guo Y L, Shen S Q, Chen J X 2012 Acta Phys. Sin. 61 184702 (in Chinese) [毕菲菲, 郭亚丽, 沈胜强, 陈觉先 2012 物理学报 61 184702]

    [11]

    Yang J, Zhang Z Z, Men X H, Xu X H, Zhu X T 2011 Carbon 49 19

    [12]

    Gao Y F, Sun D Y 2010 Chin. Phys. Lett. 27 066802

    [13]

    Gong M G, Liu Y Y, Xu X L 2010 Chin. Phys. B 19 106801

    [14]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [15]

    Wang J F, Sun F X, Cheng R J 2010 Chin. Phys. B 19 060201

    [16]

    McNamara G R, Zanetti G 1988 Phys. Rev. Lett. 61 2332

    [17]

    Dupuis A, Yeomans J M 2005 Langmuir 21 2624

    [18]

    Wang W X, Shi J, Qiu B, Li H B 2010 Acta Phys. Sin. 59 8371 (in Chinese) [王文霞, 施娟, 邱冰, 李华兵 2010 物理学报 59 8371]

    [19]

    Sun D K, Jiang D, Xiang N, Chen K, Ni Z H 2013 Chin. Phys. Lett. 30 074702

    [20]

    Kawasaki A, Onishi J, Chen Y, Ohashi H 2007 Comp. Math. Appl. 55 1492

    [21]

    Xing X Q, Butler D L, Yang C 2006 Comp. Math. Sci. 7 1

    [22]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

    [23]

    Shi Z Y, Hu G H, Zhou Z W 2010 Acta Phys. Sin. 59 2595 (in Chinese) [石自媛, 胡国辉, 周哲玮 2010 物理学报 59 2595]

    [24]

    Zhang J F, Li B M, Kwok D Y 2004 Phys. Rev. E 69 032602

    [25]

    Ginzburg I, Steiner K 2003 J. Comput. Phys. 185 61

    [26]

    Zhang M L, Hao Z N, Zhang Y P 2013 Acta Oceanol. Sin. 32 38

    [27]

    Ding Q L, Wang D G, Wang L L 2010 Shuili Xuebao 8 991 (in Chinese) [丁全林, 汪德爟, 王玲玲 2010 水利学报 8 991]

    [28]

    Liu Q Z, Kou Z M, Han Z N, Gao G J 2013 Acta Phys. Sin. 62 234701 (in Chinese) [刘邱祖, 寇子明, 韩振南, 高贵军 2013 物理学报 62 234701]

    [29]

    Xiong J B, Seiichi K, Mikio S 2011 J. Nucl. Sci. Technol. 48 145

    [30]

    Lee K S, Ivanova N, Starov V M, Hilal N, Dutschk V 2008 Adv. Colloid Interf. Sci. 144 54

    [31]

    Li H, Zheng M J, Liu S D, Ma L, Zhu C Q, Xiong Z Z 2013 Surf. Coat. Technol. 224 88

    [32]

    Liu S S, Zhang C H, He J G, Zhou J, Yin H Y 2013 Acta Phys. Sin. 62 206201 (in Chinese) [刘思思, 张朝辉, 何建国, 周杰, 尹恒洋 2013 物理学报 62 206201]

    [33]

    Siddhartha F L, Vivek V B, Nigam K D P 2007 Chem. Eng. Sci. 62 7214

    [34]

    Hu G H, Xu A J, Xu Z, Zhou Z W 2008 Phys. Fluids 20 102101

  • [1] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维气泡群熟化过程模拟. 物理学报, 2022, 71(11): 110504. doi: 10.7498/aps.70.20212183
    [2] 陈效鹏, 冯君鹏, 胡海豹, 杜鹏, 王体康. 基于格子Boltzmann方法的二维汽泡群熟化过程模拟. 物理学报, 2022, (): . doi: 10.7498/aps.71.20212183
    [3] 胡晓亮, 梁宏, 王会利. 高雷诺数下非混相Rayleigh-Taylor不稳定性的格子Boltzmann方法模拟. 物理学报, 2020, 69(4): 044701. doi: 10.7498/aps.69.20191504
    [4] 周光雨, 陈力, 张鸿雁, 崔海航. 基于格子Boltzmann方法的自驱动Janus颗粒扩散泳力. 物理学报, 2017, 66(8): 084703. doi: 10.7498/aps.66.084703
    [5] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [6] 张娅, 潘光, 黄桥高. 疏水表面减阻的格子Boltzmann方法数值模拟. 物理学报, 2015, 64(18): 184702. doi: 10.7498/aps.64.184702
    [7] 任晟, 张家忠, 张亚苗, 卫丁. 零质量射流激励下诱发液体相变及其格子Boltzmann方法模拟. 物理学报, 2014, 63(2): 024702. doi: 10.7498/aps.63.024702
    [8] 史冬岩, 王志凯, 张阿漫. 任意复杂流-固边界的格子Boltzmann处理方法. 物理学报, 2014, 63(7): 074703. doi: 10.7498/aps.63.074703
    [9] 黄桥高, 潘光, 宋保维. 疏水表面滑移流动及减阻特性的格子Boltzmann方法模拟. 物理学报, 2014, 63(5): 054701. doi: 10.7498/aps.63.054701
    [10] 毛威, 郭照立, 王亮. 热对流条件下颗粒沉降的格子Boltzmann方法模拟. 物理学报, 2013, 62(8): 084703. doi: 10.7498/aps.62.084703
    [11] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流 . 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [12] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [14] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [15] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [16] 张新明, 周超英, Islam Shams, 刘家琦. 用格子Boltzmann方法数值模拟三维空化现象. 物理学报, 2009, 58(12): 8406-8414. doi: 10.7498/aps.58.8406
    [17] 卢玉华, 詹杰民. 三维方腔温盐双扩散的格子Boltzmann方法数值模拟. 物理学报, 2006, 55(9): 4774-4782. doi: 10.7498/aps.55.4774
    [18] 张超英, 李华兵, 谭惠丽, 刘慕仁, 孔令江. 椭圆柱体在牛顿流体中运动的格子Boltzmann方法模拟. 物理学报, 2005, 54(5): 1982-1987. doi: 10.7498/aps.54.1982
    [19] 吕晓阳, 李华兵. 用格子Boltzmann方法模拟高雷诺数下的热空腔黏性流. 物理学报, 2001, 50(3): 422-427. doi: 10.7498/aps.50.422
    [20] 李华兵, 黄乒花, 刘慕仁, 孔令江. 用格子Boltzmann方法模拟MKDV方程. 物理学报, 2001, 50(5): 837-840. doi: 10.7498/aps.50.837
计量
  • 文章访问数:  3602
  • PDF下载量:  674
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-02
  • 修回日期:  2014-01-25
  • 刊出日期:  2014-05-05

改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟

  • 1. 太原理工大学机械工程学院, 太原 030024;
  • 2. 山西省矿山流体控制工程实验室, 太原 030024;
  • 3. 太原理工大学力学学院, 太原 030024
    基金项目: 国家自然科学基金联合基金(批准号:U1261107)资助的课题.

摘要: 基于疏水固壁改性会引起润湿性反转的特点,采用考虑固体与液体间分子力的格子Boltzmann方法,从壁面的线性和瞬时改性两方面对润湿性反转现象进行了数值模拟,并结合流体体积方法处理界面层质量. 结果表明:壁面线性改性的过程中润湿性反转变化平稳,润湿所需时间大幅减少,所得到的接触角与固液吸引力系数的关系与其他文献结果一致;壁面瞬时改性幅度越大说明固壁对液滴作用力越强,表现为润湿性变化越明显,瞬时改性后接触角随时间呈指数规律变化,这与现有结论相符合. 研究发现:在改性条件下液膜铺展过程中伴随着振荡变化,线性改性的振动峰值与改性幅度相关;瞬时改性的液膜速度会在某一时刻突然增大,这种现象与夹带空气有关.

English Abstract

参考文献 (34)

目录

    /

    返回文章
    返回