搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分叉微通道内液滴动力学行为的格子Boltzmann方法模拟

梁宏 柴振华 施保昌

引用本文:
Citation:

分叉微通道内液滴动力学行为的格子Boltzmann方法模拟

梁宏, 柴振华, 施保昌

Lattice Boltzmann simulation of droplet dynamics in a bifurcating micro-channel

Liang Hong, Chai Zhen-Hua, Shi Bao-Chang
PDF
导出引用
  • 本文采用格子Boltzmann方法模拟了液滴在分叉微通道中的迁移过程,主要分析壁面润湿性、毛细数、出口流量比对液滴动力学行为的影响机制.结果表明:当毛细数足够大时,液滴在支通道的迁移行为与壁面润湿性密切相关,对疏水壁面,液滴在主通道发生破裂生成两个子液滴,子液滴完全悬浮在支通道中并流向出口.而对亲水壁面,液滴首先同样破裂成两个子液滴,不同于疏水情形,子液滴紧接着发生二次破裂,导致部分二次子液滴黏附在固体表面上,另一部分流向出口;当毛细数足够小时,液滴则滞留在分叉口处,不发生破裂.最后,还发现通过调节出口流量比可以使液滴发生非对称破裂或者不破裂完全从流速较大的支通道流出.
    The droplet dynamic in a bifurcating micro-channel, as one of the basic multiphase problems, is frequently encountered in the fields of science and engineering. Due to its great relevance to many important applications and also its fascinating physical phenomena, it has attracted the increasing attention in the past decades. However, this problem is still not fully understood since it is very complicated:the droplet behaviors may be influenced by several physical factors. To clearly elucidate the physics governing droplet dynamics in a bifurcating micro-channel, a detailed numerical study on this problem is conducted. The present investigation is based on our recently developed phase-field-based lattice Boltzmann multiphase model, in which one distribution function is used to solve the Cahn-Hilliard equation, and the other is adopted to solve the Navier-Stokes equations. In this paper, we mainly focus on the effects of the surface wettability, capillary number and outlet flux ratio on the droplet dynamics, and the volume of the generated daughter droplet is also presented. The numerical results show that when the capillary number is large enough, the droplet behaviors depend critically on surface wettability. For the nonwetting case, the main droplet breaks up into two daughter droplets, which then completely suspend in the branched channels and flow towards the outlet. While for the wetting case, the main droplet also breaks up into two daughter droplets at first, and then different behaviors can be observed. The daughter droplet undergoes a secondary breakup, which results in part of droplet adhering to the wall, and the remaining flowing to the outlet. The volume of the generated daughter droplet is also measured, and it is shown that it increases linearly with contact angle increasing. When the capillary number is small enough, the droplet remains at the bifurcating position, which does not break up. Finally, we also find that the outlet flux ratio affects the rupture mechanism of the droplet. When the outlet flux ratio is 1, the droplet is split into two identical daughter droplets. When the outlet flux ratio increases, an asymmetric rupture resulting in the generation of two different daughter droplets, will be observed. However, if the outlet flux ratio is larger enough, the droplet does not breakup, and flows into the branched channel where the fluid velocity is larger. Here we define a critical outlet flux ratio, below which the droplet breakup occurs, and above which the droplet does not break up. The relationship between the capillary number and the critical outlet flux ratio is examined, and it is found that the critical outlet flux ratio increases with capillary number increasing.
      通信作者: 施保昌, shibc@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11602075,51576079,11272132)资助的课题.
      Corresponding author: Shi Bao-Chang, shibc@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11602075, 51576079, 11272132).
    [1]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198

    [2]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601

    [3]

    Manga M 1996 J. Fluid Mech. 315 105

    [4]

    Link D, Anna S L, Weitz D, Stone H A 2004 Phys. Rev. Lett. 92 054503

    [5]

    Guillot P, Colin A 2005 Phys. Rev. E 72 066301

    [6]

    Garstecki P, Fuerstman M J, Stone H A, Whitesides G M 2006 Lab on Chip 6 437

    [7]

    De Menech M, Garstecki P, Jousse F, Stone H A 2008 J. Fluid Mech. 595 141

    [8]

    Christopher G F, Noharuddin N N, Taylor J A, Anna S L 2008 Phys. Rev. E 78 036317

    [9]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397

    [10]

    Woolfenden H, Blyth M 2011 J. Fluid Mech. 669 3

    [11]

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2015 Sci. China:Chem. 45 34(in Chinese)[丛振霞, 朱春英, 付涛涛, 马友光2015中国科学:化学45 34]

    [12]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320

    [13]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore:World Scientific) pp239-285

    [14]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Progress In Physics 34 136 (in Chinese)[许爱国, 张广财, 李英骏, 李华2014物理学进展34 136]

    [15]

    Chai Z H, Shi B C, Guo Z L 2016 Phys. Rev. E 93 033113

    [16]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311

    [17]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308

    [18]

    Rowlinson J S, Widom B 1982 Molecular Theory of Capillarity (Oxford:Clarendon)

    [19]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [20]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [21]

    Huang J J, Huang H, Wang X 2015 Int. J. Numer. Methods Fluids 77 123

    [22]

    Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701

    [23]

    Ladd A J 1994 J. Fluid Mech. 271 285

    [24]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [25]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

  • [1]

    Teh S Y, Lin R, Hung L H, Lee A P 2008 Lab on Chip 8 198

    [2]

    Seemann R, Brinkmann M, Pfohl T, Herminghaus S 2012 Rep. Prog. Phys. 75 016601

    [3]

    Manga M 1996 J. Fluid Mech. 315 105

    [4]

    Link D, Anna S L, Weitz D, Stone H A 2004 Phys. Rev. Lett. 92 054503

    [5]

    Guillot P, Colin A 2005 Phys. Rev. E 72 066301

    [6]

    Garstecki P, Fuerstman M J, Stone H A, Whitesides G M 2006 Lab on Chip 6 437

    [7]

    De Menech M, Garstecki P, Jousse F, Stone H A 2008 J. Fluid Mech. 595 141

    [8]

    Christopher G F, Noharuddin N N, Taylor J A, Anna S L 2008 Phys. Rev. E 78 036317

    [9]

    Carlson A, Do-Quang M, Amberg G 2010 Int. J. Multiphase Flow 36 397

    [10]

    Woolfenden H, Blyth M 2011 J. Fluid Mech. 669 3

    [11]

    Cong Z X, Zhu C Y, Fu T T, Ma Y G 2015 Sci. China:Chem. 45 34(in Chinese)[丛振霞, 朱春英, 付涛涛, 马友光2015中国科学:化学45 34]

    [12]

    Liang H, Shi B C, Guo Z L, Chai Z H 2014 Phys. Rev. E 89 053320

    [13]

    Guo Z L, Shu C 2013 Lattice Boltzmann Method and Its Applications in Engineering (Singapore:World Scientific) pp239-285

    [14]

    Xu A G, Zhang G C, Li Y J, Li H 2014 Progress In Physics 34 136 (in Chinese)[许爱国, 张广财, 李英骏, 李华2014物理学进展34 136]

    [15]

    Chai Z H, Shi B C, Guo Z L 2016 Phys. Rev. E 93 033113

    [16]

    Liang H, Chai Z H, Shi B C, Guo Z L, Zhang T 2014 Phys. Rev. E 90 063311

    [17]

    Liang H, Shi B C, Chai Z H 2016 Phys. Rev. E 93 013308

    [18]

    Rowlinson J S, Widom B 1982 Molecular Theory of Capillarity (Oxford:Clarendon)

    [19]

    De Gennes P G 1985 Rev. Mod. Phys. 57 827

    [20]

    Lee T, Liu L 2010 J. Comput. Phys. 229 8045

    [21]

    Huang J J, Huang H, Wang X 2015 Int. J. Numer. Methods Fluids 77 123

    [22]

    Zhang T, Shi B C, Guo Z L, Chai Z H, Lu J H 2012 Phys. Rev. E 85 016701

    [23]

    Ladd A J 1994 J. Fluid Mech. 271 285

    [24]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [25]

    Kang Q, Zhang D, Chen S 2002 Phys. Fluids 14 3203

  • [1] 解奕晨, 庄晓如, 岳思君, 李翔, 余鹏, 鲁春. HFE-7100平行微通道流动沸腾实验. 物理学报, 2024, 73(5): 054401. doi: 10.7498/aps.73.20231415
    [2] 董攀, 田昌, 李杰, 王韬, 于海涛, 苏明旭, 何佳龙, 石金水. 基于Mie散射在线测量真空弧放电液滴方法探索. 物理学报, 2023, 72(8): 084203. doi: 10.7498/aps.72.20222406
    [3] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究. 物理学报, 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [4] 王晗, 袁礼, 王超, 王如志. 周期性分流微通道的结构设计及散热性能. 物理学报, 2021, 70(10): 104401. doi: 10.7498/aps.70.20201802
    [5] 邓梓龙, 李鹏宇, 张璇, 刘向东. T型微通道中液滴半阻塞不对称分裂行为研究. 物理学报, 2021, 70(7): 074701. doi: 10.7498/aps.70.20201171
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] 李玉杰, 黄军杰, 肖旭斌. 液滴撞击圆柱内表面的数值研究. 物理学报, 2018, 67(18): 184701. doi: 10.7498/aps.67.20180364
    [8] 娄钦, 李涛, 杨茉. 复杂微通道内气泡在浮力作用下上升行为的格子Boltzmann方法模拟. 物理学报, 2018, 67(23): 234701. doi: 10.7498/aps.67.20181311
    [9] 臧晨强, 娄钦. 复杂微通道内非混相驱替过程的格子Boltzmann方法. 物理学报, 2017, 66(13): 134701. doi: 10.7498/aps.66.134701
    [10] 黄虎, 洪宁, 梁宏, 施保昌, 柴振华. 液滴撞击液膜过程的格子Boltzmann方法模拟. 物理学报, 2016, 65(8): 084702. doi: 10.7498/aps.65.084702
    [11] 陶实, 王亮, 郭照立. 微尺度振荡Couette流的格子Boltzmann模拟. 物理学报, 2014, 63(21): 214703. doi: 10.7498/aps.63.214703
    [12] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [13] 闫寒, 张文明, 胡开明, 刘岩, 孟光. 随机粗糙微通道内流动特性研究. 物理学报, 2013, 62(17): 174701. doi: 10.7498/aps.62.174701
    [14] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [15] 刘邱祖, 寇子明, 韩振南, 高贵军. 基于格子Boltzmann方法的液滴沿固壁铺展动态过程模拟. 物理学报, 2013, 62(23): 234701. doi: 10.7498/aps.62.234701
    [16] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [17] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [18] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [20] 张程宾, 陈永平, 施明恒, 付盼盼, 吴嘉峰. 表面粗糙度的分形特征及其对微通道内层流流动的影响. 物理学报, 2009, 58(10): 7050-7056. doi: 10.7498/aps.58.7050
计量
  • 文章访问数:  6711
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-07-05
  • 刊出日期:  2016-10-05

/

返回文章
返回