搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

T型微通道中液滴半阻塞不对称分裂行为研究

邓梓龙 李鹏宇 张璇 刘向东

引用本文:
Citation:

T型微通道中液滴半阻塞不对称分裂行为研究

邓梓龙, 李鹏宇, 张璇, 刘向东

Semi-obstructed splitting behaviors of droplet in an asymmetric microfluidic T-junction

Deng Zi-Long, Li Peng-Yu, Zhang Xuan, Liu Xiang-Dong
PDF
HTML
导出引用
  • 液滴不对称分裂是获得不同尺寸微液滴的优选方法, 研究液滴不对称分裂行为对于生物医学、能源化工及食品工程等领域具有重要意义. 本文研制T型微通道芯片并设计搭建T型微通道液滴半阻塞不对称分裂行为可视化实验平台, 研究流量调控对微液滴分裂比的影响规律, 并建立理论模型对分裂比进行预测, 得到以下结论: 液滴不对称挤压分裂过程分为挤压前期、挤压后期和快速夹断阶段, 在挤压前期, 液滴颈部宽度随时间呈线性变化, 在挤压后期, 颈部宽度随时间呈指数关系, 而在快速夹断阶段, 液滴颈部向心收缩的界面附加压力占主导, 液滴颈部宽度剧烈收缩, 呈断崖式减小; 调控分支通道流量可对液滴不对称分裂比进行调控, 且调控作用受毛细数影响较大; 基于液液流动压降模型的液滴分裂比预测模型能够有效预测液滴分裂比.
    Asymmetric droplet splitting is a common method to obtain micro-droplets of different sizes. The study of droplet asymmetric splitting behaviors is of great significance to the fields of biomedicine, energy, chemical industry and food engineering. In this paper, the control flow is introduced into a branch of the T-shaped microchannel to control the pressure distribution in the channel and precisely control the size of the daughter droplets. The method is simple to operate and is a preferred method for asymmetric microfluidic splitting. Existing studies have analyzed droplet splitting modes, critical conditions for flow pattern transitions, and splitting dynamics, but the theoretical prediction of droplet asymmetric splitting behaviors needs to be strengthened. Moreover, compared with tunnel splitting and obstructed splitting, which are more abundantly studied, neither semi-obstructed splitting as an intermediate state of tunnel splitting nor obstructed splitting is analyzed sufficiently. Therefore, a microfluidic T-junction chip is designed and fabricated, with which asymmetrical splitting behaviors of droplets with a tunnel in a microfluidic T-junction are investigated experimentally. The influence of flow rate regulation on the droplet splitting ratio is studied. And a theoretical model is also established to predict the splitting ratio. The results are concluded as follows: 1) the process of asymmetrical droplet splitting is divided into three stages i.e. early squeezing, late squeezing and rapid pinch-off stage. In the early stage of squeezing, the radius of curvature of the droplet neck is sizable, and the additional pressure of interfacial tension is minor. Compared with the additional pressure that hinders neck contraction, the upstream continuous phase driving force is dominant, and the width of the neck changes linearly with time; in the process of late squeezing, the upstream pressure driving effect is still greater than the hindering effect of the additional tension, and the neck width changes exponentially with time; However, in the rapid pinch-off stage, the interfacial tension pointing to the center of the cross section of droplet neck dominates the pinch-off stage. Then, the droplet neck shrinks sharply. 2) Adjusting the flow rate of the branch channel can effectively control the asymmetric splitting ratio of the droplets, and under the current semi-obstructed asymmetric splitting of the droplets, the regulation effect is less affected by the size of the mother droplet, but more affected by the capillary number. 3) The prediction model of droplet splitting ratio based on the pressure drop model can effectively predict the droplet splitting ratio.
      通信作者: 刘向东, liuxd@yzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51725602, 51906039)、江苏省自然科学基金(批准号: BK20180405, BK20180102)和中央高校基本科研业务费专项资金(批准号: 2242019k1G008)资助的课题
      Corresponding author: Liu Xiang-Dong, liuxd@yzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51725602, 51906039), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20180405, BK20180102), and the Fundamental Research Funds for the Central Universities (Grant No. 2242019k1G008)
    [1]

    Chen Y P, Zhang C B, Shi M H, Yang Y C 2010 AlChE J. 56 2018

    [2]

    Wang J, Gao W, Zhang H, Zou M H, Chen Y P, Zhao Y J 2018 Sci. Adv. 4 eaat7392Google Scholar

    [3]

    Pan D, Liu M, Li F, Chen Q, Liu X, Liu Y, Zhang Z, Huang W, Li B 2018 Chem. Eng. Sci. 176 254Google Scholar

    [4]

    Sharei A, Zoldan J, Adamo A, et al. 2013 Proc. Natl. Acad Sci. USA 110 2082Google Scholar

    [5]

    Tao Y, Rotem A, Zhang H, et al. 2015 Lab Chip 15 3934Google Scholar

    [6]

    Holland-Moritz D A, Wismer M K, Mann B F, et al. 2020 Angew. Chem. Int. Ed. Engl. 59 4470Google Scholar

    [7]

    Wang J, Sun L Y, Zou M H, Gao W, Liu C H, Shang L R, Gu Z Z, Zhao Y J 2017 Sci. Adv. 3 e1700004Google Scholar

    [8]

    Zuo Y, He X, Yang Y, Wei D, Sun J, Zhong M, Xie R, Fan H, Zhang X 2016 Acta Biomater. 38 153Google Scholar

    [9]

    Lan K, Liu J, Li Z C, et al. 2016 Matter and Radiat. at Extremes 1 8Google Scholar

    [10]

    Liu M F, Su L, Li J, Chen S F, Liu Y Y, Li J, Li B, Chen Y P, Zhang Z W 2016 Matter and Radiat. at Extremes 1 213Google Scholar

    [11]

    Zhang C B, Gao W, Zhao Y J, Chen Y P 2018 Appl. Phys. Lett. 113 203702Google Scholar

    [12]

    Shang L, Cheng Y, Zhao Y 2017 Chem. Rev. 117 7964Google Scholar

    [13]

    Park J, Jung J H, Park K, Destgeer G, Ahmed H, Ahmad R, Sung H J 2018 Lab Chip 18 422Google Scholar

    [14]

    Jung J H, Destgeer G, Ha B, Park J, Sung H J 2016 Lab Chip 16 3235Google Scholar

    [15]

    Chaudhuri J, Timung S, Dandamudi C B, Mandal T K, Bandyopadhyay D 2017 Electrophoresis 38 278Google Scholar

    [16]

    崔于桐, 王宁宁, 刘海湖 2017 工程热物理学报 38 1564

    Cui Y T, Wang N N, Liu H H 2017 J. Eng. Thermophys. 38 1564

    [17]

    Cui Y T, Wang N N, Liu H H 2019 Phys. Fluids 31 022105Google Scholar

    [18]

    Rogers C I, Oxborrow J B, Anderson R R, Tsai L F, Nordin G P, Woolley A T 2014 Sens. Actuators B Chem. 191 438Google Scholar

    [19]

    Raveshi M R, Agnihotri S N, Sesen M, Bhardwaj R, Neild A 2019 Sensors Actuators B: Chem. 292 233Google Scholar

    [20]

    高崴, 于程, 姚峰 2020 中国物理B 29 054702Google Scholar

    Gao W, Yu C, Yao F 2020 Chin. Phys. B 29 054702Google Scholar

    [21]

    Chen Y P, Gao W, Zhang C B, Zhao Y J 2016 Lab Chip 16 1332Google Scholar

    [22]

    Yamada M, Doi S, Maenaka H, Yasuda M, Seki M 2008 J. Colloid Interface Sci. 321 401Google Scholar

    [23]

    王维萌, 马一萍, 王澎, 陈斌 2015 工程热物理学报 36 338

    Wang W M, Ma Y P, Wang P, Chen B 2015 J. Eng. Thermophys. 36 338

    [24]

    Wang X, Liu Z M, Pang Y 2018 Chem. Eng. Sci. 188 11Google Scholar

    [25]

    梁宏, 柴振华, 施保昌 2016 物理学报 65 204701Google Scholar

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [26]

    Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar

    [27]

    Cheng W L, Sadr R, Dai J, Han A 2018 Biomed. Microdevices 20 72Google Scholar

    [28]

    Chen B, Li G, Wang W, Wang P 2015 Appl. Therm. Eng. 88 94Google Scholar

    [29]

    俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701Google Scholar

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta Phys. Sin. 68 054701Google Scholar

    [30]

    Leshansky A M, Afkhami S, Jullien M C, Tabeling P 2012 Phys. Rev. Lett. 108 264502Google Scholar

    [31]

    Jousse F, Lian G, Janes R, Melrose J 2005 Lab Chip 5 646Google Scholar

    [32]

    Fuerstman M J, Lai A, Thurlow M E, Shevkoplyas S S, Stone H A, Whitesides G M 2007 Lab Chip 7 1479Google Scholar

    [33]

    Ladosz A, von Rohr P R 2018 Chem. Eng. Sci. 191 398Google Scholar

    [34]

    Mortensen N A, Okkels F, Bruus H 2005 Phys. Rev. E Stat Nonlin. Soft Matter Phys. 71 057301Google Scholar

    [35]

    Warnier M J F, de Croon M, Rebrov E V, Schouten J C 2010 Microfluid. Nanofluid. 8 33Google Scholar

    [36]

    Wong H, Radke C J, Morris S 1995 J. Fluid Mech. 292 95Google Scholar

  • 图 1  微流控芯片结构 (a)示意图, I-流动聚焦微通道, II-辅助微通道, III-T型分裂微通道, IV-调控微通道; (b)实物图, 其中Qc为连续相体积流量, Qd为离散相体积流量, Qf为辅助流量, Qt为调控流量

    Fig. 1.  Geometric structure of the microfluidic chip: (a) Schematic diagram, I-flow focusing microchannel, II-T-shaped splitting microchannel, III-tuning microchannel; (b) actual chip, Qc is volumetric flow rate of continuous phase, Qd is volumetric flow rate of dispersed phase, Qf is volumetric flow rate of supporting continuous phase, Qt is volumetric flow rate of controlling continuous phase

    图 2  液滴半阻塞不对称分裂示意图(u为流体速度, lm为母液滴长度, w为微通道宽度, Δx为子液滴头部位移, d为液滴颈部宽度, ld为子液滴长度, lc为子液滴间距)

    Fig. 2.  Schematic of droplet asymmetrical splitting with a tunnel in a T-junciton (u is velocity of the fluid, lm is length of the mother droplet, w is width of the microchannel, Δx is displacement of the head of the daughter droplets, d is width of the droplet neck, ld is length of the daughter droplet, lc is interval of daughter droplets).

    图 3  实验系统图

    Fig. 3.  Schematic of the experimental system.

    图 4  典型半阻塞不对称分裂过程 (Qc = 400 μL/h, Qd = 40 μL/h, Ca = 5.53 × 10–4, lm/w = 4.08)

    Fig. 4.  Typical droplet assymetrical splitting with a tunnel in a microfluidic T-junction (Qc = 400 μL/h, Qd = 40 μL/h, Ca = 5.53 × 10–4, lm /w = 4.08).

    图 5  液滴颈部宽度演变过程(Qc = 400 μL/h, Qd = 40 μL/h, Qt = 0 μL/h, Ca = 5.53 × 10–4, lm /w = 4.08, T = 0.2592 s), 其中(tt4)/T = 0时表示颈部刚开始收缩

    Fig. 5.  Evolution of neck width d/w with dimensionless time (tt4)/T (Qc = 400 μL/h, Qd = 40 μL/h, Qt = 0 μL/h, Ca = 5.53 × 10–4, lm/w = 4.08, T = 0.2592 s), where (tt4)/T = 0 represents the neck starts contracting.

    图 6  分裂过程中液滴前端位移(Qc = 400 μL/h, Qd = 40 μL/h, Qt = 0 μL/h, Ca = 5.53 × 10–4, lm/w = 4.08, T = 0.2592 s), 其中(tt4)/T = 0表示液滴头部刚开始进入分支通道

    Fig. 6.  Motion of droplet front cap during splitting process (Qc = 400 μL/h, Qd = 40 μL/h, Qt = 0 μL/h, Ca = 5.53 × 10–4, lm/w = 4.08, T = 0.2592 s), where (tt4)/T = 0 represents the head of the droplet has just entered the branch channel.

    图 7  调控流量Qt对液滴分裂比的影响(Qd = 50 μL/h)

    Fig. 7.  Active regulation of droplet splitting ratio by tuning flow Qt (Qd = 50 μL/h).

    图 8  液滴不对称分裂模型 (a)实物图; (b)简化图

    Fig. 8.  Asymmetrical droplet splitting model: (a) Actual microchannel; (b) simplified diagram.

    图 9  调控流量Qt变化时液滴不对称分裂比预测值与实验值对比 (a) lm/w = 4.37, Ca = 5.24 × 10–3; (b) lm/w = 4.99, Ca = 3.88 × 10–3; (c) lm/w = 5.44, Ca = 3.04 × 10–3; (d) lm/w = 6.24, Ca = 2.22 × 10–3; (e) lm/w = 7.50, Ca = 1.32 × 10–3

    Fig. 9.  Comparison of predicted value and experimental value of droplet asymmetric split ratio when Qt changes: (a) lm/w = 4.37, Ca = 5.24 × 10–3; (b) lm/w = 4.99, Ca = 3.88 × 10–3; (c) lm/w = 5.44, Ca = 3.04 × 10–3; (d) lm/w = 6.24, Ca = 2.22 × 10–3; (e) lm/w = 7.50, Ca = 1.32 × 10–3.

  • [1]

    Chen Y P, Zhang C B, Shi M H, Yang Y C 2010 AlChE J. 56 2018

    [2]

    Wang J, Gao W, Zhang H, Zou M H, Chen Y P, Zhao Y J 2018 Sci. Adv. 4 eaat7392Google Scholar

    [3]

    Pan D, Liu M, Li F, Chen Q, Liu X, Liu Y, Zhang Z, Huang W, Li B 2018 Chem. Eng. Sci. 176 254Google Scholar

    [4]

    Sharei A, Zoldan J, Adamo A, et al. 2013 Proc. Natl. Acad Sci. USA 110 2082Google Scholar

    [5]

    Tao Y, Rotem A, Zhang H, et al. 2015 Lab Chip 15 3934Google Scholar

    [6]

    Holland-Moritz D A, Wismer M K, Mann B F, et al. 2020 Angew. Chem. Int. Ed. Engl. 59 4470Google Scholar

    [7]

    Wang J, Sun L Y, Zou M H, Gao W, Liu C H, Shang L R, Gu Z Z, Zhao Y J 2017 Sci. Adv. 3 e1700004Google Scholar

    [8]

    Zuo Y, He X, Yang Y, Wei D, Sun J, Zhong M, Xie R, Fan H, Zhang X 2016 Acta Biomater. 38 153Google Scholar

    [9]

    Lan K, Liu J, Li Z C, et al. 2016 Matter and Radiat. at Extremes 1 8Google Scholar

    [10]

    Liu M F, Su L, Li J, Chen S F, Liu Y Y, Li J, Li B, Chen Y P, Zhang Z W 2016 Matter and Radiat. at Extremes 1 213Google Scholar

    [11]

    Zhang C B, Gao W, Zhao Y J, Chen Y P 2018 Appl. Phys. Lett. 113 203702Google Scholar

    [12]

    Shang L, Cheng Y, Zhao Y 2017 Chem. Rev. 117 7964Google Scholar

    [13]

    Park J, Jung J H, Park K, Destgeer G, Ahmed H, Ahmad R, Sung H J 2018 Lab Chip 18 422Google Scholar

    [14]

    Jung J H, Destgeer G, Ha B, Park J, Sung H J 2016 Lab Chip 16 3235Google Scholar

    [15]

    Chaudhuri J, Timung S, Dandamudi C B, Mandal T K, Bandyopadhyay D 2017 Electrophoresis 38 278Google Scholar

    [16]

    崔于桐, 王宁宁, 刘海湖 2017 工程热物理学报 38 1564

    Cui Y T, Wang N N, Liu H H 2017 J. Eng. Thermophys. 38 1564

    [17]

    Cui Y T, Wang N N, Liu H H 2019 Phys. Fluids 31 022105Google Scholar

    [18]

    Rogers C I, Oxborrow J B, Anderson R R, Tsai L F, Nordin G P, Woolley A T 2014 Sens. Actuators B Chem. 191 438Google Scholar

    [19]

    Raveshi M R, Agnihotri S N, Sesen M, Bhardwaj R, Neild A 2019 Sensors Actuators B: Chem. 292 233Google Scholar

    [20]

    高崴, 于程, 姚峰 2020 中国物理B 29 054702Google Scholar

    Gao W, Yu C, Yao F 2020 Chin. Phys. B 29 054702Google Scholar

    [21]

    Chen Y P, Gao W, Zhang C B, Zhao Y J 2016 Lab Chip 16 1332Google Scholar

    [22]

    Yamada M, Doi S, Maenaka H, Yasuda M, Seki M 2008 J. Colloid Interface Sci. 321 401Google Scholar

    [23]

    王维萌, 马一萍, 王澎, 陈斌 2015 工程热物理学报 36 338

    Wang W M, Ma Y P, Wang P, Chen B 2015 J. Eng. Thermophys. 36 338

    [24]

    Wang X, Liu Z M, Pang Y 2018 Chem. Eng. Sci. 188 11Google Scholar

    [25]

    梁宏, 柴振华, 施保昌 2016 物理学报 65 204701Google Scholar

    Liang H, Chai Z H, Shi B C 2016 Acta Phys. Sin. 65 204701Google Scholar

    [26]

    Fu Y H, Bai L, Jin Y, Cheng Y 2017 Phys. Fluids 29 032003Google Scholar

    [27]

    Cheng W L, Sadr R, Dai J, Han A 2018 Biomed. Microdevices 20 72Google Scholar

    [28]

    Chen B, Li G, Wang W, Wang P 2015 Appl. Therm. Eng. 88 94Google Scholar

    [29]

    俞炜, 邓梓龙, 吴苏晨, 于程, 王超 2019 物理学报 68 054701Google Scholar

    Yu W, Deng Z L, Wu S C, Yu C, Wang C 2019 Acta Phys. Sin. 68 054701Google Scholar

    [30]

    Leshansky A M, Afkhami S, Jullien M C, Tabeling P 2012 Phys. Rev. Lett. 108 264502Google Scholar

    [31]

    Jousse F, Lian G, Janes R, Melrose J 2005 Lab Chip 5 646Google Scholar

    [32]

    Fuerstman M J, Lai A, Thurlow M E, Shevkoplyas S S, Stone H A, Whitesides G M 2007 Lab Chip 7 1479Google Scholar

    [33]

    Ladosz A, von Rohr P R 2018 Chem. Eng. Sci. 191 398Google Scholar

    [34]

    Mortensen N A, Okkels F, Bruus H 2005 Phys. Rev. E Stat Nonlin. Soft Matter Phys. 71 057301Google Scholar

    [35]

    Warnier M J F, de Croon M, Rebrov E V, Schouten J C 2010 Microfluid. Nanofluid. 8 33Google Scholar

    [36]

    Wong H, Radke C J, Morris S 1995 J. Fluid Mech. 292 95Google Scholar

  • [1] 张晓林, 黄军杰. 楔形体上复合液滴润湿铺展行为的格子Boltzmann方法研究. 物理学报, 2023, 72(2): 024701. doi: 10.7498/aps.72.20221472
    [2] 王澄瑶, 李旭, 卢晓云. COP-PDMS微流控芯片的制备及在太赫兹对肠道上皮细胞生物效应中的应用. 物理学报, 2021, 70(24): 248706. doi: 10.7498/aps.70.20211807
    [3] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [4] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [5] 王月桐, 商珞然, 赵远锦. 基于液滴界面不稳定性的表面粗糙聚合物微球的制备及其细胞捕获应用. 物理学报, 2020, 69(8): 084701. doi: 10.7498/aps.69.20200362
    [6] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [7] 李蕾, 张程宾. 电场对协流式微流控装置中乳液液滴生成行为的调控机理. 物理学报, 2018, 67(17): 176801. doi: 10.7498/aps.67.20180616
    [8] 宋宗根, 邓科, 何兆剑, 赵鹤平. 高对称型声子晶体自准直弯曲及分束. 物理学报, 2016, 65(9): 094301. doi: 10.7498/aps.65.094301
    [9] 闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭. 仿生微流控的发展与应用. 物理学报, 2016, 65(17): 178301. doi: 10.7498/aps.65.178301
    [10] 梁宏, 柴振华, 施保昌. 分叉微通道内液滴动力学行为的格子Boltzmann方法模拟. 物理学报, 2016, 65(20): 204701. doi: 10.7498/aps.65.204701
    [11] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [12] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [13] 侯立凯, 任玉坤, 姜洪源. 表面镀金SU-8微柱的低频电动旋转特征. 物理学报, 2013, 62(20): 200702. doi: 10.7498/aps.62.200702
    [14] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [15] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [16] 陶锋, 陈伟中, 许文, 都思丹. 基于非线性超传导的能流不对称传输现象的研究. 物理学报, 2012, 61(13): 134103. doi: 10.7498/aps.61.134103
    [17] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [18] 李湘衡, 张冰志, 佘卫龙. 相干光伏空间孤子非对称碰撞研究. 物理学报, 2011, 60(7): 074216. doi: 10.7498/aps.60.074216
    [19] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [20] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
计量
  • 文章访问数:  4384
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-22
  • 修回日期:  2020-11-13
  • 上网日期:  2021-03-18
  • 刊出日期:  2021-04-05

/

返回文章
返回