搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面镀金SU-8微柱的低频电动旋转特征

侯立凯 任玉坤 姜洪源

引用本文:
Citation:

表面镀金SU-8微柱的低频电动旋转特征

侯立凯, 任玉坤, 姜洪源

Electrorotation characteristics of gold-coated SU-8 microrods at low frequency

Hou Li-Kai, Ren Yu-Kun, Jiang Hong-Yuan
PDF
导出引用
  • 依据传统Maxwell-Wagner界面极化理论, 金属微纳米粒子由于具有极高电导率, 在旋转电场作用下无明显电旋转运动. 然而, 本文针对镀金SU-8微柱开展实验研究, 发现镀金微柱在低频条件下的快速旋转运动现象. 据此, 通过考虑镀金微柱表面双电层效应, 理论分析并实验验证镀金微柱的低频电旋转特征. 首先, 建立电场中微柱的近似椭球模型, 分析固-液接触面双电层作用下的金属粒子极化机理, 推导旋转电场作用下镀金微柱的转矩公式及电旋转角速度公式. 其次, 搭建实验平台, 分别对镀金微柱在三种不同电导率溶液、100 Hz–30 MHz频率范围内的电旋转特征进行对比实验研究. 最后, 对实验结果进行分析和讨论, 并通过考虑镀金微柱与基底之间摩擦作用等因素, 验证实验研究与理论研究的一致性.
    According to the theory of traditional Maxwell-Wagner interface polarization, the metal micro/nano particles have no obvious electrorotation behavior under the alternating current electric field. However, we find the opposite experimental results. In this paper, electrorotation experiments are carried out, and the basic mechanism of gold-coated SU-8 microrods is presented. Therefore the electrorotation characteristics of gold-coated microrod at low frequency are analysed by considering the surface electric double layer at the microrod-electrolyte interface. Specifically, first we establish an approximate ellipsoid model in the electric field, analyze the polarization mechanism of metal particles under the action of solid-liquid interface electric double layer, and then calculate the electrorotation torque and present an electrorotation angular speed formula of the gold-coated microrod. Secondly, electrorotation experiments of gold-coated SU-8 microrods suspended in electrolytes with different conductivities are presented in a frequency range of 100 Hz to 30 MHz. Finally, the experimental results are discussed, and compared with the theoretical analysis, showing the experimental results are in good agreement with theoretical analyses by considering the friction between the microrods and substrate.
    • 基金项目: 国家自然科学基金(批准号: 51075087)和浙江大学流体动力与机电系统国家重点实验室开放基金(批准号: GZKF-201107)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51075087) and the State Key Laboratory of Fluid Power Trans-mission and Control of Zhejiang University, China (Grant No. GZKF-201107).
    [1]

    Ren Y K, Ao H R, Gu J Z, Jiang H Y, Antonio R 2009 Acta Phys. Sin. 58 7869 (in Chinese) [任玉坤, 敖宏瑞, 顾建忠, 姜洪源, Antonio R 2009 物理学报 58 7869]

    [2]

    Morgan H, Green N G 2003 AC Electrokinetics: Colloids and Nanoparticles (Beijing: Higher Education Press) p119

    [3]

    Morales M C, Lin H, Zahn J D 2012 Lab. Chip. 12 99

    [4]

    Zhu X L, Yin Z F, Gao Z Q, Ni Z H 2010 Sci. China: Tech. Sci. 53 2388

    [5]

    Yasukawa T, Suzuki M, Shiku H, Matsue T 2009 Sens. Actuator. B: Chem. 142 400

    [6]

    Jones T B 1995 Electromechanics of Particles (New York: Cambridge University Press)

    [7]

    Desai A, Lee S W, Tai C Y 1999 Sens. Actuator. A: Phys. 73 37

    [8]

    Reichle C, Muller T, Schnelle T, Fuhr G 1999 J. Phys. D: Appl.Phys. 32 2128

    [9]

    Zimmermann D, Zhou A, Kiesel M, Feldbauer K, Terpitz U, Haase W, Schneider-Hohendorf T, Bamberg E, Sukhorukov V L 2008 Biochem. Biophys. Res. Commun. 369 1022

    [10]

    Reichle C, Muller T, Schnelle T, Fuhr G 1999 J. Phys. D: Appl.Phys. 32 2128

    [11]

    Jiang H Y, Ren Y K, Han X J, Tao Y, Li S S 2011 Sci. China: Tech. Sci. 54 643

    [12]

    Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082

    [13]

    Ren Y K, Tao Y, Hou L K, Jiang H Y 2013 Chin. Phys. B 22 087701

    [14]

    Jiang H Y, Ren Y K, Tao Y 2011 Chin. Phys. B 20 057701

    [15]

    Mayya K S, Schoeler B, Caruso F 2003 Adv. Funct. Mater. 13 183

    [16]

    Lim J K, Eggeman A, Lanni F, Tilton R D, Majetich S A 2008 Adv. Mater. 20 1721

    [17]

    Gangwal S, Gayre O J, Bazant M Z, Velev O D 2008 Phys. Rev. Lett. 100 058302

    [18]

    Grosse C, Shilov V N 1996 J. Phys. Chem. 100 1771

    [19]

    Ren Y K, Morganti D, Jiang H Y, Ramos A, Morgan H 2011 Langmuir 27 2128

    [20]

    Lorenz H, Despont M, LaBianca N, Renaud P, Vettiger P 1997 J. Micromech. Microeng. 7 121

    [21]

    Morganti D, Morgan H 2011 Colloid. Surf. A: Phys. 376 67

    [22]

    Rose K A, Meier J A, Dougherty G M, Santiago J G 2007 Phys. Rev. E 75 011503

    [23]

    García-Sanchez P, Ren Y K, Arcenegui J J, Morgan H, Ramos A 2012 Langmuir 28 13861

    [24]

    Minoura I, Muto E 2006 Biophysi. J. 90 3739

    [25]

    Jiang H Y, Ren Y K, Tao Y 2011 Acta Phys. Sin. 60 010701 (in Chinese) [姜洪源, 任玉坤, 陶冶 2011 物理学报 60 010701]

    [26]

    Ren Y K 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [任玉坤 2011 博士学位论文(哈尔滨: 哈尔滨工业大学)]

  • [1]

    Ren Y K, Ao H R, Gu J Z, Jiang H Y, Antonio R 2009 Acta Phys. Sin. 58 7869 (in Chinese) [任玉坤, 敖宏瑞, 顾建忠, 姜洪源, Antonio R 2009 物理学报 58 7869]

    [2]

    Morgan H, Green N G 2003 AC Electrokinetics: Colloids and Nanoparticles (Beijing: Higher Education Press) p119

    [3]

    Morales M C, Lin H, Zahn J D 2012 Lab. Chip. 12 99

    [4]

    Zhu X L, Yin Z F, Gao Z Q, Ni Z H 2010 Sci. China: Tech. Sci. 53 2388

    [5]

    Yasukawa T, Suzuki M, Shiku H, Matsue T 2009 Sens. Actuator. B: Chem. 142 400

    [6]

    Jones T B 1995 Electromechanics of Particles (New York: Cambridge University Press)

    [7]

    Desai A, Lee S W, Tai C Y 1999 Sens. Actuator. A: Phys. 73 37

    [8]

    Reichle C, Muller T, Schnelle T, Fuhr G 1999 J. Phys. D: Appl.Phys. 32 2128

    [9]

    Zimmermann D, Zhou A, Kiesel M, Feldbauer K, Terpitz U, Haase W, Schneider-Hohendorf T, Bamberg E, Sukhorukov V L 2008 Biochem. Biophys. Res. Commun. 369 1022

    [10]

    Reichle C, Muller T, Schnelle T, Fuhr G 1999 J. Phys. D: Appl.Phys. 32 2128

    [11]

    Jiang H Y, Ren Y K, Han X J, Tao Y, Li S S 2011 Sci. China: Tech. Sci. 54 643

    [12]

    Hermanson K D, Lumsdon S O, Williams J P, Kaler E W, Velev O D 2001 Science 294 1082

    [13]

    Ren Y K, Tao Y, Hou L K, Jiang H Y 2013 Chin. Phys. B 22 087701

    [14]

    Jiang H Y, Ren Y K, Tao Y 2011 Chin. Phys. B 20 057701

    [15]

    Mayya K S, Schoeler B, Caruso F 2003 Adv. Funct. Mater. 13 183

    [16]

    Lim J K, Eggeman A, Lanni F, Tilton R D, Majetich S A 2008 Adv. Mater. 20 1721

    [17]

    Gangwal S, Gayre O J, Bazant M Z, Velev O D 2008 Phys. Rev. Lett. 100 058302

    [18]

    Grosse C, Shilov V N 1996 J. Phys. Chem. 100 1771

    [19]

    Ren Y K, Morganti D, Jiang H Y, Ramos A, Morgan H 2011 Langmuir 27 2128

    [20]

    Lorenz H, Despont M, LaBianca N, Renaud P, Vettiger P 1997 J. Micromech. Microeng. 7 121

    [21]

    Morganti D, Morgan H 2011 Colloid. Surf. A: Phys. 376 67

    [22]

    Rose K A, Meier J A, Dougherty G M, Santiago J G 2007 Phys. Rev. E 75 011503

    [23]

    García-Sanchez P, Ren Y K, Arcenegui J J, Morgan H, Ramos A 2012 Langmuir 28 13861

    [24]

    Minoura I, Muto E 2006 Biophysi. J. 90 3739

    [25]

    Jiang H Y, Ren Y K, Tao Y 2011 Acta Phys. Sin. 60 010701 (in Chinese) [姜洪源, 任玉坤, 陶冶 2011 物理学报 60 010701]

    [26]

    Ren Y K 2011 Ph. D. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [任玉坤 2011 博士学位论文(哈尔滨: 哈尔滨工业大学)]

  • [1] 邓梓龙, 李鹏宇, 张璇, 刘向东. T型微通道中液滴半阻塞不对称分裂行为研究. 物理学报, 2021, 70(7): 074701. doi: 10.7498/aps.70.20201171
    [2] 王澄瑶, 李旭, 卢晓云. COP-PDMS微流控芯片的制备及在太赫兹对肠道上皮细胞生物效应中的应用. 物理学报, 2021, 70(24): 248706. doi: 10.7498/aps.70.20211807
    [3] 王月桐, 商珞然, 赵远锦. 基于液滴界面不稳定性的表面粗糙聚合物微球的制备及其细胞捕获应用. 物理学报, 2020, 69(8): 084701. doi: 10.7498/aps.69.20200362
    [4] 金康, 经光银. 双电层相互作用下主动粒子系统的压强. 物理学报, 2019, 68(17): 170501. doi: 10.7498/aps.68.20190435
    [5] 李东阳, 张远宪, 欧永雄, 普小云. 聚二甲基硅氧烷微流道中光流控荧光共振能量转移激光. 物理学报, 2019, 68(5): 054203. doi: 10.7498/aps.68.20181696
    [6] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱. 物理学报, 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [7] 李蕾, 张程宾. 电场对协流式微流控装置中乳液液滴生成行为的调控机理. 物理学报, 2018, 67(17): 176801. doi: 10.7498/aps.67.20180616
    [8] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋. 基于蛋清栅介质的超低压双电层薄膜晶体管. 物理学报, 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [9] 杨慧慧, 高峰, 戴明金, 胡平安. 介电层表面直接生长石墨烯的研究进展. 物理学报, 2017, 66(21): 216804. doi: 10.7498/aps.66.216804
    [10] 陈强, 漆小波, 陈素芬, 刘梅芳, 潘大伟, 李波, 张占文. 微流控技术中双重乳粒尺寸调控规律的研究. 物理学报, 2017, 66(4): 046801. doi: 10.7498/aps.66.046801
    [11] 闵伶俐, 陈松月, 盛智芝, 王宏龙, 吴锋, 王苗, 侯旭. 仿生微流控的发展与应用. 物理学报, 2016, 65(17): 178301. doi: 10.7498/aps.65.178301
    [12] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响. 物理学报, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [13] 胡杰, 邓霄, 桑胜波, 李朋伟, 李刚, 张文栋. 微流控技术制备ZnO纳米线阵列及其气敏特性. 物理学报, 2014, 63(20): 207102. doi: 10.7498/aps.63.207102
    [14] 孙运利, 王昌辉, 乐孜纯. 基于微流控光学可调谐的渐变折射率特性研究. 物理学报, 2014, 63(15): 154701. doi: 10.7498/aps.63.154701
    [15] 周建伟, 梁静秋, 梁中翥, 田超, 秦余欣, 王维彪. 光控液晶光子晶体微腔全光开关. 物理学报, 2013, 62(13): 134208. doi: 10.7498/aps.62.134208
    [16] 刘全生, 杨联贵, 苏洁. 微平行管道内Jeffrey流体的非定常电渗流动 . 物理学报, 2013, 62(14): 144702. doi: 10.7498/aps.62.144702
    [17] 陈陶, 梁忠诚, 钱晨, 徐宁. 基于电润湿微棱镜技术的可调光衰减器特性分析. 物理学报, 2010, 59(11): 7906-7910. doi: 10.7498/aps.59.7906
    [18] 李宝兴, 叶美英, 褚巧燕, 俞 健. 玻璃微流控芯片表面改性的微观机理研究. 物理学报, 2007, 56(6): 3446-3452. doi: 10.7498/aps.56.3446
    [19] 杨 涛, 何冬慧, 张磬兰, 马红孺. 电解液中带电平板与带电胶体球之间的有效相互作用. 物理学报, 2005, 54(12): 5937-5942. doi: 10.7498/aps.54.5937
    [20] 罗新炼, 王永久, 程立伟. 旋转荷电球体外部引力场中引力效应. 物理学报, 1997, 46(5): 846-851. doi: 10.7498/aps.46.846
计量
  • 文章访问数:  2819
  • PDF下载量:  523
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-29
  • 修回日期:  2013-07-24
  • 刊出日期:  2013-10-05

表面镀金SU-8微柱的低频电动旋转特征

  • 1. 哈尔滨工业大学机电工程学院, 哈尔滨 150001;
  • 2. 浙江大学, 流体动力与机电系统国家重点实验室, 杭州 310027
    基金项目: 国家自然科学基金(批准号: 51075087)和浙江大学流体动力与机电系统国家重点实验室开放基金(批准号: GZKF-201107)资助的课题.

摘要: 依据传统Maxwell-Wagner界面极化理论, 金属微纳米粒子由于具有极高电导率, 在旋转电场作用下无明显电旋转运动. 然而, 本文针对镀金SU-8微柱开展实验研究, 发现镀金微柱在低频条件下的快速旋转运动现象. 据此, 通过考虑镀金微柱表面双电层效应, 理论分析并实验验证镀金微柱的低频电旋转特征. 首先, 建立电场中微柱的近似椭球模型, 分析固-液接触面双电层作用下的金属粒子极化机理, 推导旋转电场作用下镀金微柱的转矩公式及电旋转角速度公式. 其次, 搭建实验平台, 分别对镀金微柱在三种不同电导率溶液、100 Hz–30 MHz频率范围内的电旋转特征进行对比实验研究. 最后, 对实验结果进行分析和讨论, 并通过考虑镀金微柱与基底之间摩擦作用等因素, 验证实验研究与理论研究的一致性.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回