搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微流控技术中双重乳粒尺寸调控规律的研究

陈强 漆小波 陈素芬 刘梅芳 潘大伟 李波 张占文

引用本文:
Citation:

微流控技术中双重乳粒尺寸调控规律的研究

陈强, 漆小波, 陈素芬, 刘梅芳, 潘大伟, 李波, 张占文

Controlled production of double emulsion by microfluid technique

Chen Qiang, Qi Xiao-Bo, Chen Su-Fen, Liu Mei-Fang, Pan Da-Wei, Li Bo, Zhang Zhan-Wen
PDF
导出引用
  • 在采用乳液微封装技术制备惯性聚变用聚--甲基苯乙烯(PAMS)靶丸芯轴过程中,以氟苯为油相溶剂,水溶性聚合物水溶液为外水相制备水包油包水(W1/O/W2)双重复合乳粒,对复合乳粒进行固化干燥得到PAMS靶丸芯轴.本文设计搭建了一套双重同轴乳粒发生器,用微流控技术产生PAMS靶丸复合乳粒,该乳粒发生器采用两种不同结构:两步法通道与一步法通道.研究了利用此乳粒发生器制备复合乳粒过程中,乳粒形成机理及三相流速对乳粒尺寸调控规律.实验结果显示,乳粒发生器结构上的细小差异会极大地影响乳粒形成机理以及尺寸变化规律.在两步法通道结构中,内水相流速对复合乳粒的形成及外径无明显影响,而外径随外水相流速的变化规律与单乳粒实心液滴(O/W2)尺寸变化规律相同;在固定体系中,乳粒尺寸取决于内水相与油相流速之和及外水相流速,而与内水相和油相流速之比无关.然而在一步法通道中,由于W1-O界面的存在,内水相流速对复合乳粒外径的影响非常大;复合乳粒外径不仅与内层相界面的界面张力大小有关,还与内水相与油相流速之比有关.最后,将实验中的双重复合乳粒置于水溶性聚合物水溶液中进行固化,得到毫米级空心聚合物微球.
    All planned inertial confinement fusion (ICF) capsule targets except machined beryllium require plastic mandrels with tight requirements on which the ablator is built. In this paper, the fabrication of poly(-methylstyrene) (PAMS) mandrel is studied. PAMS mandrels are produced by using microencapsulation technique. This technique involves producing a water droplet (W1) encapsulated by a flourobenzen (FB) solution of PAMS (O) with a droplet generator, and this droplet is then flushed off by external phase (W2), forming a water-in-oil-in-water (W1/O/W2) compound-emulsion droplet, which is suspended in a stirred flask filled with external phase to cure. The encapsulation process is based on a microfluid technique, which can achieve the controlled production of millimeter-scale PAMS mandrels. In this work, capillaries-based co-flowing microfluidic triple orifice generator is designed and built to fabricate W1/O/W2 droplets. Two configurations of the droplet generator:one-step device and two-step device, are employed in this experiment. In one-step device, the end of oil phase capillary is located at the same position as the end of inner water phase capillary. So the core droplet and the shell droplet break off from their capillaries ends at the same time, forming a W1/O/W2 droplet. While in the two-step device, the W1 phase capillary tip is located upstream to the W2 phase capillary tip. As a result, the core droplet and the shell droplet depart from the ends of their capillaries respectively, forming a W1/O/W2 droplet as well. Differently, the shell droplet contains only one core droplet in one-step generator, while several core droplets are contained in the shell droplet in two-step generator. In this paper, the mechanism of the droplet formation and the effect of the flow rate on the size of the droplet are studied with these two configurations. Results show that tiny difference between the two generators will lead to great differences in droplet formation mechanism and size control. In the two-step generator, the inner phase flow rate has little influence in the outer diameter of the compound-emulsion droplet. The diameters of the compound-emulsion droplets have a similar change to the diameters of the single droplets (O/W2). In one-step device, the inner phase flow rate has a significant influence on the outer diameter of the double-emulsion droplet because of the existence of W1-O interface. Finally, the compound-emulsion droplets fabricated in this experiment are cured in external phase, after which PAMS mandrels are fabricated. The diameters of the final PAMS mandrels are measured with optical microscope. The distribution of the diameters well concentrates in an area of (200010) upm, which is favorable for producing the PAMS mandrels with a diameter of 2000 upm.
      通信作者: 漆小波, xbqi@caep.cn
    • 基金项目: NSAF基金(批准号:U1530260)资助的课题.
      Corresponding author: Qi Xiao-Bo, xbqi@caep.cn
    • Funds: Project supported by the Foundation of NSAF (Grant No.U1530260).
    [1]

    Cheng X, Li J, Li X, Zhang D, Zhang H, Zhang A, Huang H, Lian J 2012J. Mater. Chem. 22 24102

    [2]

    Lou X W, Archer L A, Yang Z 2009Chem. Inform. 40 3987

    [3]

    Yang X, Chen L, Bo H, Bai F, Yang X 2009Polymer 50 355

    [4]

    Chen S F, Liu Y Y, Wei S, Su L, Li B, Xi X B, Zhang Z W, Huang Y 2012High Power Laser and Particle Beams 24 2647(in Chinese)[陈素芬, 刘一杨, 魏胜, 苏琳, 李波, 漆小波, 张占文, 黄勇2012强激光与粒子束24 2647]

    [5]

    Letts S A, Fearson E M, Buckley S R, Cook R 1995Fusion Technol. 28 1797

    [6]

    Eklund Jesper E, Shkel A M 2010US Patent 7694531

    [7]

    Takagi M, Ishihara M, Norimatsu T, Yamanaka M 1993J. Vacuum Sci. Technol.:A Vacuum Surfaces Films 11 2837

    [8]

    Takagi M, Norimatsu T, Yamanaka T, Nakai S 1991J. Vacuum Sci. Technol.:A Vacuum Surfaces Films 9 2145

    [9]

    Buckley S, Cook B, Hassel A, Takagi M 1999Office Sci. Tech. Inform. Tech. Reports 1 98

    [10]

    Hamilton K E, Letts S A, Buckley S R, Fearon E M, Wilemski G, Cook R, Schroen-Carey D 1997Office Sci. Tech. Inform. Tech. Reports 31 391

    [11]

    Chen G W, Zhao Y C, Yuan Q 2010J. Chem. Industry and Engineer. 1 1627(in Chinese)[陈光文, 赵玉潮, 袁权2010化工学报1 1627]

    [12]

    Guillot P, Colin A, Utada A S, Ajdari A 2007Phys. Rev. Lett. 99 104502

    [13]

    Umbanhowar P B, Prasad V, Weitz D A 2000Langmuir 16 347

    [14]

    Park J M, Anderson P D 2012Lab on A Chip 12 2672

    [15]

    Chen S F, Liu Y Y, Su L, Xi X B, Shi R T, Liu M F, Zhang Z W, Li B 2013J. Chem. Industry Engineer. 64 2446(in Chinese)[陈素芬, 刘一杨, 苏琳, 漆小波, 史瑞廷, 刘梅芳, 张占文, 李波2013化工学报64 2446]

    [16]

    Wang G X, Li B, Wei J J 2013Chin. J. Colloid Polymer 1 3(in Chinese)[汪国秀, 李波, 韦建军2013胶体与聚合物1 3]

    [17]

    Zhang L, Cui B S 1995High Power Laser and Particle Beams 1 151(in Chinese)[张林, 崔保顺1995强激光与粒子束1 151]

    [18]

    Cao H, Huang Y, Chen S F, Zhang Z W, Wei J J 2013Acta Phys. Sin. 19 395(in Chinese)[曹洪, 黄勇, 陈素芬, 张占文, 韦建军2013物理学报19 395]

    [19]

    Hou K, Zhang Z W, Huang Y, Wei J J 2016Acta Phys. Sin. 65 185(in Chinese)[侯堃, 张占文, 黄勇, 韦建军2016物理学报65 185]

    [20]

    Wang L F, Liu L, Xu H C, Rong W B, Sun L N 2015Chin. Phys. Lett. 32 97

    [21]

    Xu J H, Luo G S, Chen G G, Wang J D 2005J. Membrane Sci. 266 121

    [22]

    Ye G, Kojima H, Miki N 2011Sensors Actuators:A Physical 169 326

    [23]

    Chen S F, Su L, Liu Y Y, Li B, Xi X B, Zhang Z W, Liu M F 2012High Power Laser and Particle Beams 24 1561(in Chinese)[陈素芬, 苏琳, 刘一杨, 李波, 漆小波, 张占文, 刘梅芳2012强激光与粒子束24 1561]

  • [1]

    Cheng X, Li J, Li X, Zhang D, Zhang H, Zhang A, Huang H, Lian J 2012J. Mater. Chem. 22 24102

    [2]

    Lou X W, Archer L A, Yang Z 2009Chem. Inform. 40 3987

    [3]

    Yang X, Chen L, Bo H, Bai F, Yang X 2009Polymer 50 355

    [4]

    Chen S F, Liu Y Y, Wei S, Su L, Li B, Xi X B, Zhang Z W, Huang Y 2012High Power Laser and Particle Beams 24 2647(in Chinese)[陈素芬, 刘一杨, 魏胜, 苏琳, 李波, 漆小波, 张占文, 黄勇2012强激光与粒子束24 2647]

    [5]

    Letts S A, Fearson E M, Buckley S R, Cook R 1995Fusion Technol. 28 1797

    [6]

    Eklund Jesper E, Shkel A M 2010US Patent 7694531

    [7]

    Takagi M, Ishihara M, Norimatsu T, Yamanaka M 1993J. Vacuum Sci. Technol.:A Vacuum Surfaces Films 11 2837

    [8]

    Takagi M, Norimatsu T, Yamanaka T, Nakai S 1991J. Vacuum Sci. Technol.:A Vacuum Surfaces Films 9 2145

    [9]

    Buckley S, Cook B, Hassel A, Takagi M 1999Office Sci. Tech. Inform. Tech. Reports 1 98

    [10]

    Hamilton K E, Letts S A, Buckley S R, Fearon E M, Wilemski G, Cook R, Schroen-Carey D 1997Office Sci. Tech. Inform. Tech. Reports 31 391

    [11]

    Chen G W, Zhao Y C, Yuan Q 2010J. Chem. Industry and Engineer. 1 1627(in Chinese)[陈光文, 赵玉潮, 袁权2010化工学报1 1627]

    [12]

    Guillot P, Colin A, Utada A S, Ajdari A 2007Phys. Rev. Lett. 99 104502

    [13]

    Umbanhowar P B, Prasad V, Weitz D A 2000Langmuir 16 347

    [14]

    Park J M, Anderson P D 2012Lab on A Chip 12 2672

    [15]

    Chen S F, Liu Y Y, Su L, Xi X B, Shi R T, Liu M F, Zhang Z W, Li B 2013J. Chem. Industry Engineer. 64 2446(in Chinese)[陈素芬, 刘一杨, 苏琳, 漆小波, 史瑞廷, 刘梅芳, 张占文, 李波2013化工学报64 2446]

    [16]

    Wang G X, Li B, Wei J J 2013Chin. J. Colloid Polymer 1 3(in Chinese)[汪国秀, 李波, 韦建军2013胶体与聚合物1 3]

    [17]

    Zhang L, Cui B S 1995High Power Laser and Particle Beams 1 151(in Chinese)[张林, 崔保顺1995强激光与粒子束1 151]

    [18]

    Cao H, Huang Y, Chen S F, Zhang Z W, Wei J J 2013Acta Phys. Sin. 19 395(in Chinese)[曹洪, 黄勇, 陈素芬, 张占文, 韦建军2013物理学报19 395]

    [19]

    Hou K, Zhang Z W, Huang Y, Wei J J 2016Acta Phys. Sin. 65 185(in Chinese)[侯堃, 张占文, 黄勇, 韦建军2016物理学报65 185]

    [20]

    Wang L F, Liu L, Xu H C, Rong W B, Sun L N 2015Chin. Phys. Lett. 32 97

    [21]

    Xu J H, Luo G S, Chen G G, Wang J D 2005J. Membrane Sci. 266 121

    [22]

    Ye G, Kojima H, Miki N 2011Sensors Actuators:A Physical 169 326

    [23]

    Chen S F, Su L, Liu Y Y, Li B, Xi X B, Zhang Z W, Liu M F 2012High Power Laser and Particle Beams 24 1561(in Chinese)[陈素芬, 苏琳, 刘一杨, 李波, 漆小波, 张占文, 刘梅芳2012强激光与粒子束24 1561]

  • [1] 朱进进, 吴雨祥, 邵晓鹏. 基于利萨茹椭圆拟合的两步相移轮廓技术. 物理学报, 2021, 70(17): 170602. doi: 10.7498/aps.70.20210644
    [2] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应. 物理学报, 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [3] 胡小颖, 王淑敏, 裴艳慧, 田宏伟, 朱品文. 碳纳米片-碳纳米管复合材料的一步合成及其场 发射性质研究. 物理学报, 2013, 62(3): 038101. doi: 10.7498/aps.62.038101
    [4] 杜杨, 雷耀虎, 刘鑫, 郭金川, 牛憨笨. 硬X射线光栅微分干涉相衬成像两步相移算法的理论与实验研究. 物理学报, 2013, 62(6): 068702. doi: 10.7498/aps.62.068702
    [5] 刘芳芳, 张力, 何青. Cu(In, Ga)Se2 薄膜在共蒸发"三步法"中的相变过程. 物理学报, 2013, 62(7): 077201. doi: 10.7498/aps.62.077201
    [6] 洪武, 梁琳, 余岳辉. 两步式放电改善反向开关晶体管开通特性研究. 物理学报, 2012, 61(5): 058501. doi: 10.7498/aps.61.058501
    [7] 徐先锋, 韩立立, 袁红光. 两步相移数字全息物光重建误差分析与校正. 物理学报, 2011, 60(8): 084206. doi: 10.7498/aps.60.084206
    [8] 孟祥锋, 彭翔, 蔡履中, 何文奇, 秦琬, 郭继平, 李阿蒙. 优化的两步相移算法在图像加密中的应用研究. 物理学报, 2010, 59(9): 6118-6124. doi: 10.7498/aps.59.6118
    [9] 崔玉亭, 游素琴, 武亮, 马勇, 陈京兰, 潘复生, 吴光恒. Ni53.2Mn22.6Ga24.2单晶的两步热弹性马氏体相变及其应力应变特性. 物理学报, 2009, 58(12): 8596-8601. doi: 10.7498/aps.58.8596
    [10] 赵洪英, 戴长建, 关锋. 钐原子的两步激发共振光电离光谱. 物理学报, 2009, 58(1): 215-222. doi: 10.7498/aps.58.215
    [11] 孟祥锋, 蔡履中, 王玉荣, 彭翔. 两步广义相移干涉术的光学实验验证. 物理学报, 2009, 58(3): 1668-1674. doi: 10.7498/aps.58.1668
    [12] 公茂刚, 许小亮, 曹自立, 刘远越, 朱海明. 两步法制备超疏水性ZnO纳米棒薄膜. 物理学报, 2009, 58(3): 1885-1889. doi: 10.7498/aps.58.1885
    [13] 王 烨, 许小亮, 谢炜宇, 汪壮兵, 吕 柳, 赵亚丽. 两步法制备空间取向高度一致的ZnO纳米棒阵列. 物理学报, 2008, 57(4): 2582-2586. doi: 10.7498/aps.57.2582
    [14] 单 梁, 梁 彦, 李 军, 王执铨. 统一混沌系统的状态Riccati方程同步法. 物理学报, 2007, 56(8): 4366-4371. doi: 10.7498/aps.56.4366
    [15] 谷建峰, 刘志文, 刘 明, 付伟佳, 马春雨, 张庆瑜. Si(001)基片上反应射频磁控溅射ZnO薄膜的两步生长方法. 物理学报, 2007, 56(4): 2369-2376. doi: 10.7498/aps.56.2369
    [16] 马平, 刘乐园, 张升原, 王昕, 谢飞翔, 邓鹏, 聂瑞娟, 王守证, 戴远东, 王福仁. 直流磁控溅射一步法原位制备MgB2超导薄膜. 物理学报, 2002, 51(2): 406-409. doi: 10.7498/aps.51.406
    [17] 赖建文, 周世平, 李国辉, 徐得名. 间歇驱动混沌同步法. 物理学报, 2001, 50(1): 21-25. doi: 10.7498/aps.50.21
    [18] 卢正启, 柴春林, 赖武彦. 两步法制备的自旋阀巨磁电阻效应研究. 物理学报, 2000, 49(2): 328-333. doi: 10.7498/aps.49.328
    [19] 舒晓武, 张森, 谢卫军, 方达渭. 原子两步激发禁戒态寿命及环境辐射的影响. 物理学报, 1996, 45(8): 1275-1279. doi: 10.7498/aps.45.1275
    [20] 唐小玲, 王祖赓, 秦莉娟, 郑一善. 基于两步混合激发Na2-Na系统的可调谐红外受激辐射. 物理学报, 1988, 37(8): 1227-1235. doi: 10.7498/aps.37.1227
计量
  • 文章访问数:  3047
  • PDF下载量:  286
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-07
  • 修回日期:  2016-11-29
  • 刊出日期:  2017-02-05

微流控技术中双重乳粒尺寸调控规律的研究

  • 1. 中国工程物理研究院, 激光聚变研究中心, 绵阳 621900
  • 通信作者: 漆小波, xbqi@caep.cn
    基金项目: NSAF基金(批准号:U1530260)资助的课题.

摘要: 在采用乳液微封装技术制备惯性聚变用聚--甲基苯乙烯(PAMS)靶丸芯轴过程中,以氟苯为油相溶剂,水溶性聚合物水溶液为外水相制备水包油包水(W1/O/W2)双重复合乳粒,对复合乳粒进行固化干燥得到PAMS靶丸芯轴.本文设计搭建了一套双重同轴乳粒发生器,用微流控技术产生PAMS靶丸复合乳粒,该乳粒发生器采用两种不同结构:两步法通道与一步法通道.研究了利用此乳粒发生器制备复合乳粒过程中,乳粒形成机理及三相流速对乳粒尺寸调控规律.实验结果显示,乳粒发生器结构上的细小差异会极大地影响乳粒形成机理以及尺寸变化规律.在两步法通道结构中,内水相流速对复合乳粒的形成及外径无明显影响,而外径随外水相流速的变化规律与单乳粒实心液滴(O/W2)尺寸变化规律相同;在固定体系中,乳粒尺寸取决于内水相与油相流速之和及外水相流速,而与内水相和油相流速之比无关.然而在一步法通道中,由于W1-O界面的存在,内水相流速对复合乳粒外径的影响非常大;复合乳粒外径不仅与内层相界面的界面张力大小有关,还与内水相与油相流速之比有关.最后,将实验中的双重复合乳粒置于水溶性聚合物水溶液中进行固化,得到毫米级空心聚合物微球.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回