搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低磁场下驻波对螺旋波等离子体均匀性的影响

牛晨 刘忠伟 杨丽珍 陈强

引用本文:
Citation:

低磁场下驻波对螺旋波等离子体均匀性的影响

牛晨, 刘忠伟, 杨丽珍, 陈强

Effect of standing wave on the uniformity of a low magnetic field helicon plasma

Niu Chen, Liu Zhong-Wei, Yang Li-Zhen, Chen Qiang
PDF
导出引用
  • 螺旋波放电具有很高的耦合效率,作为一种高密度等离子体源在材料表面处理、薄膜沉积、离子推进器等领域具有广阔的应用前景.不同的波模式下能量耦合的方式直接关系到源区的等离子体分布,进而影响扩散腔中材料的处理和沉积薄膜的均匀性.本文通过电特性(功率-电流)曲线、增强型电荷耦合相机和磁探针诊断等方式对螺旋波等离子体源中出现的角向不均匀性进行研究,认为天线下端出现的驻波螺旋波可能是造成这种现象的关键因素.
    Helicon wave discharge has higher coupling efficiency than capactively coupled and inductively coupled discharge in low static magnetic field. In the wave sustained mode, a large volume and large area plasma can be produced at lower pressure by using comparable discharge power, and thus it expands the helicon wave plasma applications in material surface modification, thin film deposition, dry etching and thruster usage. However, the application of helicon wave source still faces challenges, such as the controversial power coupling mechanism, operation stability and the plasma distribution uniformity in the experiment. The wave mode existing in bounded helicon wave plasma column generally consists of helicon and Trivelpiece-Gould (TG) components, and their mode transitions and different transverse wave field distribution regions, and the propagating characteristic of the helicon wave are directly related to the power coupling and plasma density distribution in the source region, then affect the uniformity of material processing and film deposition in the diffusion chamber. In this paper, the plasma azimuthal non-uniformity, with using Doubble Saddle antenna, 100 G static magnetic field in helicon wave plasma source, is studied by electrical characteristic (power-current) curve, intensified charge coupled device (ICCD) image and magnetic probe measurements. The electrical characteristic curve indicates two discharge stages with different effective resistances. Meanwhile, in the second stage, the higher effective resistance would result in higher coupling efficiency and higher plasma density. But the ICCD image demonstrates the azimuthal non-uniformity of plasma, indicating that the main heating points at the diagonal edge are linked to the stationary transverse electrical field line pattern of azimuthal mode number m=+1 helicon wave, and the magnetic probe is used to measure the helicon wave magnetic field Bz component along the quartz source tube axially. The magnetic probe results show that the standing wave appearing below the antenna even though in the upper region of the antenna is characteristic of the traveling wave. Furthermore, at the plasma boundary, the standing wave can be coupled to the TG wave, and not like travelling wave it has no angular rotation of the electric field and may cause the non-uniform coupling between the helicon and TG components. The TG wave then has azimuthal non-uniform electron heating. Therefore, the standing helicon wave below the antenna is the key factor to the plasma non-uniformity problem. Changing the propagating characteristics of the helicon wave further in the plasma column will be of positive significance for optimizing the discharge efficiency of the plasma source and controlling the plasma distribution uniformity, stability and other operations as well.
      通信作者: 陈强, lppmchenqiang@hotmail.com
    • 基金项目: 国家自然基金(批准号:11375031,11505013)和北京市自然科学基金(批准号:4162024,KZ201510015014,KZ04190116009/001,KM201510015009,KM201510015002)资助的课题.
      Corresponding author: Chen Qiang, lppmchenqiang@hotmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11375031,11505013) and the Beijing Municipal National Science Foundation,China (Grant Nos.4162024,KZ201510015014,KZ04190116009/001,KM201510015009,KM201510015002).
    [1]

    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001

    [2]

    Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677

    [3]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474

    [4]

    Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J 2015 Physics 172 425

    [5]

    Blackwell D D, Chen F F 1997 Plasma Sources Sci. Technol. 6 569

    [6]

    Kim J H, Yun S M, Chang H Y 1996 IEEE Trans. Plasma Sci. 24 1364

    [7]

    Degeling A W, Jung C O, Boswell R W, Ellingboe A R 1996 Phys. Plasmas 3 2788

    [8]

    Franck C M, Grulke O, Klinger T 2003 Phys. Plasmas 10 323

    [9]

    Kramer M, Lorenz B, Clarenbach B 2002 Plasma Sources Sci. Technol. 11 120

    [10]

    Perry A J, Vender D, Boswell R W 1991 J. Vac. Sci. Technol. B 9 310

    [11]

    Shinohara S, Yonekura K 2000 Plasma Phys. Control. Fusion 42 41

    [12]

    Loewenhardt P K, Blackwell B D, Boswell R W, Conway G D, Hamberger S M 1991 Phys. Rev. Lett. 67 2792

    [13]

    Boswell R W 1984 Plasma Phys. Control. Fusion 26 1147

    [14]

    Boswell R W, Porteous R, Prytz A, Bouchoule A, Ranson P 1982 Phys. Lett. A 91 163

    [15]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York:John Wiley) p19

    [16]

    Sun B, Huo W G, Ding Z F 2012 Rev. Sci. Instrum. 83 085112

    [17]

    Franck C M, Grulke O, Klinger T 2002 Rev. Sci. Instrum. 73 3768

    [18]

    Ma C 2014 M. S. Thesis (Beijing:Beijing Institute of Graphic Communication) (in Chinese)[马超 2014 硕士学位论文 (北京:北京印刷学院)]

    [19]

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202 (in Chinese)[赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202]

    [20]

    Breizman B N, Arefiev A V 2000 Phys. Rev. Lett. 84 3863

    [21]

    Chen F F 1991 Plasma Phys. Control. Fusion 33 339

    [22]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (London:Cambrige University Press and Science Press) p276

    [23]

    Jane P C, Chen F F 2002 Lecture Notes on Principles of Plasma Processing (London:Plenum/Kluwer) p62

    [24]

    Borg G G, Boswell R W 1998 Phys. Plasmas 5 564

  • [1]

    Chen F F 2015 Plasma Sources Sci. Technol. 24 014001

    [2]

    Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677

    [3]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474

    [4]

    Wilczek S, Trieschmann J, Eremin D, Brinkmann R P, Schulze J 2015 Physics 172 425

    [5]

    Blackwell D D, Chen F F 1997 Plasma Sources Sci. Technol. 6 569

    [6]

    Kim J H, Yun S M, Chang H Y 1996 IEEE Trans. Plasma Sci. 24 1364

    [7]

    Degeling A W, Jung C O, Boswell R W, Ellingboe A R 1996 Phys. Plasmas 3 2788

    [8]

    Franck C M, Grulke O, Klinger T 2003 Phys. Plasmas 10 323

    [9]

    Kramer M, Lorenz B, Clarenbach B 2002 Plasma Sources Sci. Technol. 11 120

    [10]

    Perry A J, Vender D, Boswell R W 1991 J. Vac. Sci. Technol. B 9 310

    [11]

    Shinohara S, Yonekura K 2000 Plasma Phys. Control. Fusion 42 41

    [12]

    Loewenhardt P K, Blackwell B D, Boswell R W, Conway G D, Hamberger S M 1991 Phys. Rev. Lett. 67 2792

    [13]

    Boswell R W 1984 Plasma Phys. Control. Fusion 26 1147

    [14]

    Boswell R W, Porteous R, Prytz A, Bouchoule A, Ranson P 1982 Phys. Lett. A 91 163

    [15]

    Lieberman M A, Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York:John Wiley) p19

    [16]

    Sun B, Huo W G, Ding Z F 2012 Rev. Sci. Instrum. 83 085112

    [17]

    Franck C M, Grulke O, Klinger T 2002 Rev. Sci. Instrum. 73 3768

    [18]

    Ma C 2014 M. S. Thesis (Beijing:Beijing Institute of Graphic Communication) (in Chinese)[马超 2014 硕士学位论文 (北京:北京印刷学院)]

    [19]

    Zhao G, Xiong Y Q, Ma C, Liu Z W, Chen Q 2014 Acta Phys. Sin. 63 235202 (in Chinese)[赵高, 熊玉卿, 马超, 刘忠伟, 陈强 2014 物理学报 63 235202]

    [20]

    Breizman B N, Arefiev A V 2000 Phys. Rev. Lett. 84 3863

    [21]

    Chen F F 1991 Plasma Phys. Control. Fusion 33 339

    [22]

    Chabert P, Braithwaite N 2011 Physics of Radio-Frequency Plasmas (London:Cambrige University Press and Science Press) p276

    [23]

    Jane P C, Chen F F 2002 Lecture Notes on Principles of Plasma Processing (London:Plenum/Kluwer) p62

    [24]

    Borg G G, Boswell R W 1998 Phys. Plasmas 5 564

  • [1] 徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁. 常压等离子体对柔性多孔材料表面处理均匀性的研究进展. 物理学报, 2021, 70(9): 099401. doi: 10.7498/aps.70.20210077
    [2] 屈广宁, 凡凤仙, 张斯宏, 苏明旭. 驻波声场中单分散细颗粒的相互作用特性. 物理学报, 2020, 69(6): 064704. doi: 10.7498/aps.69.20191681
    [3] 韩金华, 郭刚, 刘建成, 隋丽, 孔福全, 肖舒颜, 覃英参, 张艳文. 100 MeV质子双环双散射体扩束方案设计. 物理学报, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [4] 黄志精, 李倩昀, 白婧, 唐国宁. 在具有排斥耦合的神经元网络中有序斑图的熵测量. 物理学报, 2019, 68(11): 110503. doi: 10.7498/aps.68.20190231
    [5] 钟哲强, 侯鹏程, 张彬. 基于光克尔效应的径向光束匀滑新方案. 物理学报, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [6] 汪拓, 吴锋, 李端勇, 陈浩, 林杰. 驻波热声系统的自激振荡机理. 物理学报, 2015, 64(4): 044301. doi: 10.7498/aps.64.044301
    [7] 李泽龙, 钟哲强, 张彬. 基于互补型偏振控制板的多光束叠加特性研究. 物理学报, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [8] 张宝武, 支理想, 张文涛. 基于直边衍射高斯激光驻波光学势阱仿真. 物理学报, 2012, 61(18): 183201. doi: 10.7498/aps.61.183201
    [9] 陈阳益, 林楚佑, 李孟学, 李政达. 无旋性前进重力波传递在均匀流中的Lagrangen解析解与试验验证Ⅱ.试验验证. 物理学报, 2012, 61(3): 034703. doi: 10.7498/aps.61.034703
    [10] 陈阳益, 许弘莒, 张宪国. 无旋性前进重力波传递在均匀流中的Lagrange解析解与试验验证Ⅰ.理论解析解. 物理学报, 2012, 61(3): 034702. doi: 10.7498/aps.61.034702
    [11] 邱克强, 刘正坤, 徐向东, 刘颖, 洪义麟, 付绍军. 全息光刻中的驻波效应研究. 物理学报, 2012, 61(1): 014204. doi: 10.7498/aps.61.014204
    [12] 闵琦, 刘克. 失谐驻波管及其极高纯净驻波场性质的研究. 物理学报, 2011, 60(2): 024301. doi: 10.7498/aps.60.024301
    [13] 潘金艳, 张文彦, 高云龙. 基于铟锡氧化物/Ti复合电极的高亮度碳纳米管场致发射冷阴极. 物理学报, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [14] 牟宗信, 牟晓东, 贾莉, 王春, 董闯. 非平衡磁控溅射双势阱静电波动及其共振耦合. 物理学报, 2010, 59(10): 7164-7169. doi: 10.7498/aps.59.7164
    [15] 陈阳益, 许弘莒. 非旋转性自由表面重力驻波的Euler与Lagrange方法解间的转换. 物理学报, 2009, 58(6): 3637-3654. doi: 10.7498/aps.58.3637
    [16] 黄虎. 经典三阶驻波、短峰波的有效匹配解. 物理学报, 2009, 58(10): 6761-6763. doi: 10.7498/aps.58.6761
    [17] 丁 锐, 王志良, 小仓久直. 二维各向同性均匀随机介质中平面波的传播及其局域性. 物理学报, 2008, 57(9): 5519-5528. doi: 10.7498/aps.57.5519
    [18] 贾仁需, 张义门, 张玉明, 王悦湖. N型4H-SiC同质外延生长. 物理学报, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [19] 李 鹤, 李学东, 李 娟, 吴春亚, 孟志国, 熊绍珍, 张丽珠. 表面修饰改善溶液法金属诱导晶化薄膜稳定性与均匀性研究. 物理学报, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [20] 马大猷. 微扰法求解非线性驻波问题. 物理学报, 1996, 45(5): 796-800. doi: 10.7498/aps.45.796
计量
  • 文章访问数:  2840
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-16
  • 修回日期:  2016-11-23
  • 刊出日期:  2017-02-05

低磁场下驻波对螺旋波等离子体均匀性的影响

    基金项目: 国家自然基金(批准号:11375031,11505013)和北京市自然科学基金(批准号:4162024,KZ201510015014,KZ04190116009/001,KM201510015009,KM201510015002)资助的课题.

摘要: 螺旋波放电具有很高的耦合效率,作为一种高密度等离子体源在材料表面处理、薄膜沉积、离子推进器等领域具有广阔的应用前景.不同的波模式下能量耦合的方式直接关系到源区的等离子体分布,进而影响扩散腔中材料的处理和沉积薄膜的均匀性.本文通过电特性(功率-电流)曲线、增强型电荷耦合相机和磁探针诊断等方式对螺旋波等离子体源中出现的角向不均匀性进行研究,认为天线下端出现的驻波螺旋波可能是造成这种现象的关键因素.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回