搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

驻波场中非均匀手征分层粒子的辐射力特性

白靖 马文浩 葛城显 吴振森 许彤

引用本文:
Citation:

驻波场中非均匀手征分层粒子的辐射力特性

白靖, 马文浩, 葛城显, 吴振森, 许彤
cstr: 32037.14.aps.73.20240842

Radiation force characteristics of non-uniform chiral stratified particles in standing wave field

Bai Jing, Ma Wen-Hao, Ge Cheng-Xian, Wu Zhen-Sen, Xu Tong
cstr: 32037.14.aps.73.20240842
PDF
HTML
导出引用
  • 随着光学技术的发展, 人们对光场与微粒相互作用的研究越来越深入. 通过研究驻波场中非均匀手性粒子的辐射力特性, 可以深入了解光场对微粒的影响机制, 为微纳米尺度下分层手征粒子的操控和应用提供新思路. 本文对双高斯波束照射下非均匀手征分层粒子的辐射力展开研究. 从广义洛伦兹-米氏理论(generalized Lorentz-Mie theory, GLMT)和球矢量波函数(spherical vector wave functions, SVWFs)出发, 推导了双高斯波束(double Gaussian beams, DGBS)的总入射场展开系数. 基于边界连续条件和电磁动量守恒定理, 得到双高斯波对粒子的辐射力表达式. 通过与现有文献进行比较, 证明了理论和程序的正确性. 详细分析了各种参数对辐射力的影响, 如束腰宽度、偏振形式、粒子半径、内外手征参数、折射率、最外层厚度等. 研究表明, 与单个高斯束相比, 反向传播的高斯驻波在捕获或限制非均匀手性分层粒子方面表现出显著优势, 提供了更强的粒子操控能力. 此外, 通过选择合适的偏振态入射, 可以在这些参数之间实现微妙的平衡, 从而有效地稳定俘获非均匀手性粒子. 这些研究对于分析和理解形状复杂多层生物细胞的光学特性具有重要意义, 并在多层生物结构微操控方面具有重要应用价值.
    Objective With the development of optical technology, the investigation of light-field-particle interactions has gained significant momentum. Such studies find widespread applications in optical manipulation, precision laser ranging, laser gas spectroscopy, and related fields. In optical manipulation techniques, employing two or more laser beams proves more effective for capturing and manipulating particles than using a single beam alone. In addition, with the increasing demand for manipulating particles with complex structures, it is necessary to conduct in-depth research on the radiation force characteristics of double Gaussian beams on non-uniform chiral particles. This research aims to deepen our understanding of how optical fields influence particles, thereby offering fresh perspectives in manipulating and utilizing non-uniform chiral layered particles on both a microscale and a nanoscale. Method Based on the generalized Lorentz-Mie theory (GLMT) and spherical vector wave functions (SVWFs), the total incident field of a double Gaussian beam can be expanded by using the coordinate addition theorem. The incident field coefficient and scattering coefficient of each region of the multilayer chiral sphere are obtained by enforcing boundary continuity and employing multilayer sphere scattering theory. The radiation force acting on non-uniform chiral layered particles within a double Gaussian beam is then derived through application of the electromagnetic momentum conservation theorem. Results and Discussions The theory and programs in this paper is compared with those in existing literature. The influence of various parameters on the radiation force is analyzed in detail, such as the incident angle, polarization angle, beam waist width, beam center position, and internal and external chiral parameters. These results indicate that compared with a single Gaussian beam, counter-propagating Gaussian standing waves exhibit significant advantages in capturing or confining inhomogeneous chiral layered particles, offering enhanced particle manipulation capabilities. Additionally, by selecting an appropriate polarization state of the incident light, a delicate balance can be achieved among these parameters, effectively stabilizing the capture of inhomogeneous chiral particles. Conclusions This study employs the generalized Lorenz-Mie theory and the principle of electromagnetic momentum conservation to derive analytical expressions for the transverse and axial radiation forces exerted by dual Gaussian beams on multi-layered chiral particles propagating in arbitrary directions. The research provides an in-depth analysis of how standing wave beams affect the radiation force behavior of non-uniform chiral particles. Numerical analysis reveals significant influences of beam waist, particle size, chiral parameters, polarization angle and mode, as well as particle refractive index on both transverse and axial radiation forces. This research is important in analyzing and understanding the optical properties of complex-shaped multilayer biological cells and realizing the applications in the micromanipulation of multilayer biological structures.
      通信作者: 白靖, jbaiyoudian@163.com
    • 基金项目: 国家自然科学基金(批准号: 62001377, 62101445, 61571355, 61601355, 61308025)、陕西省自然科学基金(批准号: 2023-JC-QN-0657, 2023-JC-QN-0774, 2022KJXX-95)和西安市科协青年人才托举计划(批准号: 959202313013)资助的课题.
      Corresponding author: Bai Jing, jbaiyoudian@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62001377, 62101445, 61571355, 61601355, 61308025), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2023-JC-QN-0657, 2023-JC-QN-0774, 2022KJXX-95), and the Science and Technology Association Youth Talent Nurturing Program of Xi’an, China (Grant No. 959202313013).
    [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [2]

    Ashkin A 1980 Science 210 1081Google Scholar

    [3]

    Leach J, Howard D, Roberts S, Gibson G, Gothard D, Cooper J, Buttery L 2009 J. Mod. Optic. 56 448Google Scholar

    [4]

    Molloy J E, Dholakia K, Padgett M J 2003 J. Mod. Optic. 50 1501Google Scholar

    [5]

    Parlatan U, Başar G, Başar G 2019 J. Mod. Optic. 66 228Google Scholar

    [6]

    Jordan P, Clare H, Flendrig L, Leach J, Cooper J, Padgett M 2004 J. Mod. Optic. 51 627Google Scholar

    [7]

    Tang Q, Liu P Z, Tang S 2022 Chin. Phys. B 31 044301Google Scholar

    [8]

    Barton J P, Alexander D R, Schaub S A 1989 J. Appl. Phys. 66 4594Google Scholar

    [9]

    Yang A H, Moore S D, Schmidt B S, Klug M, Lipson M, Erickson D 2009 Nature 457 71Google Scholar

    [10]

    Padgett M, Bowman R 2011 Nat. Photon. 5 343Google Scholar

    [11]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [12]

    Kiselev A D, Plutenko D O 2016 Phys. Rev. A 94 013804Google Scholar

    [13]

    Zang Y C, Lin W J, Su C, Wu P F 2021 Chin. Phys. B 30 044301Google Scholar

    [14]

    Dong F B, Chang C H, Jun F H, Yi W 2009 Chin. Phys. B 18 2853Google Scholar

    [15]

    Ng J, Lin Z F, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar

    [16]

    Liu X Y, Sun C, Deng D M 2021 Chin. Phys. B 30 024202Google Scholar

    [17]

    王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波 2023 物理学报 72 027801Google Scholar

    Wang Y, Peng M, Cheng W, Peng Z, Cheng H, Zang S Y, Liu H, Ren X D, Shuai Y B, Huang C Z, Wu J G, Yang J B 2023 Acta Phys. Sin. 72 027801Google Scholar

    [18]

    殷杰, 陶超, 刘晓峻 2015 物理学报 64 098102Google Scholar

    Yin J, Tao C, Liu X J 2015 Acta Phys. Sin. 64 098102Google Scholar

    [19]

    Ashkin A, Dziedzic J M 1971 Appl. Phys. Lett. 19 283Google Scholar

    [20]

    Zemánek P, Jonáš A, Šrámek L, Liška M 1998 Opt. Commun. 151 273Google Scholar

    [21]

    Zemánek P, Jonáš A, Liška M 2002 J. Opt. Soc. Am. A 19 1025Google Scholar

    [22]

    Gauthier R C, Frangioudakis A 2000 Appl. Opt. 39 26Google Scholar

    [23]

    Ren K F, Greha G, Gouesbet G 1994 Opt. Commun. 108 343Google Scholar

    [24]

    Gouesbet G, Lock J A 1994 J. Opt. Soc. Am. A 11 2516Google Scholar

    [25]

    Zemánek P, Jonáš A, Jákl P, Šerý M, Liška M 2003 Opt. Commun. 220 401Google Scholar

    [26]

    Cizmar T, Garces-Chavez V, Dholakia K, Zemanek P 2004 Opt. Trap. Micro. 5514 643Google Scholar

    [27]

    Van der Horst A, van Oostrum P D J, Moroz A, van Blaaderen A, Dogterom M 2008 Appl. Opt. 47 3196Google Scholar

    [28]

    Zhao L, Li Y, Qi J, Xu J, Sun Q 2010 Opt. Express 18 5724Google Scholar

    [29]

    Zhang T, Mahdy M R C, Dewan S S, Hossain M N, Rivy H M, Masud N, Jony Z R 2018 arXiv: 1811.01874 [physics. optics]

    [30]

    Li Z J, Li S, Li H Y, Qu T, Shang Q C 2021 J. Opt. Soc. Am. A 38 616Google Scholar

    [31]

    Wang S L, Liu X, Mourdikoudis S, Chen J, Fu W W, Sofer Z, Zhang Y, Zhang S P, Zheng G C 2022 ACS Nano. 16 19789Google Scholar

    [32]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [33]

    Rohrbach A, Stelzer E H K 2001 J. Opt. Soc. Am. A 18 839Google Scholar

    [34]

    史书姝, 肖姗, 许秀来 2022 物理学报 71 067801Google Scholar

    Shi S S, Xiao S, Xu X L 2022 Acta Phys. Sin. 71 067801Google Scholar

    [35]

    王志全, 施卫 2022 物理学报 71 188704Google Scholar

    Wang Z Q, Shi W 2022 Acta Phys. Sin. 71 188704Google Scholar

    [36]

    Habashi A, Ghobadi C, Nourinia J, R Naderali 2023 Opt. Commun. 547 129840Google Scholar

    [37]

    米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华 2013 物理学报 62 134704Google Scholar

    Mi L, Zhou H W, Sun Z W, Liu L X, Xu S H 2013 Acta Phys. Sin. 62 134704Google Scholar

    [38]

    Worasawate D, Mautz J R, Arvas E 2003 IEEE Trans. Antennas Propag. 51 1077Google Scholar

    [39]

    Yuceer M, Mautz J R, Arvas E 2005 IEEE Trans. Antennas Propag. 53 1163Google Scholar

    [40]

    Demir V, Elsherbeni A Z, Arvas E 2005 IEEE Trans. Antennas Propag. 53 3374Google Scholar

    [41]

    Kuzu L, Demir V, Elsherbeni A Z, Arvas E 2007 Prog. Electromagn. Res. 67 1Google Scholar

    [42]

    Cooray M F R, Ciric I R 1993 J. Opt. Soc. Am. A 10 1197Google Scholar

    [43]

    Ermutlu M E, Sihvola A H 1994 Prog. Electromagn. Res. 9 87Google Scholar

    [44]

    Jaggard D L, Liu J C 1999 IEEE Trans. Antennas Propag. 47 1201Google Scholar

    [45]

    Yan B, Liu C H, Zhang H Y, Shi Y 2015 Opt. Commun. 338 261Google Scholar

    [46]

    Wang W J, Sun Y F, Zhang H Y 2017 Opt. Commun. 385 54Google Scholar

    [47]

    Gao X, Zhang H 2017 Optik 129 43Google Scholar

    [48]

    Zheng M, Zhang H Y, Sun Y F, Wang Z G 2015 J. Quant. Spectrosc. Ra. 151 192Google Scholar

    [49]

    Li L W, Dan Y, Leong M S, Kong J A 1999 Prog. Electromagn. Res. 23 239Google Scholar

    [50]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2016 J. Quant. Spectrosc. Ra. 173 72Google Scholar

    [51]

    Qu T, Wu Z S, Shang Q C, Wu J, Bai L 2018 J. Quant. Spectrosc. Ra. 217 363Google Scholar

    [52]

    Bai J, Liu X, Ge C X, Li Z J, Xiao C, Wu Z S, Shang Q C 2024 Opt. Commun. 554 130136Google Scholar

    [53]

    Edmonds A R, Mendlowitz H 1958 Phys. Today 11 34Google Scholar

    [54]

    Gouesbet G, Gréhan G 1999 J Opt. A-Pure. Appl. Opt. 1 706Google Scholar

    [55]

    Geng Y L, Wu X B, Li L W, Guan B R 2004 Phys. Rev. E 70 056609Google Scholar

    [56]

    Lock J A, Gouesbet G 1994 J. Opt. Soc. Am. A 11 2503Google Scholar

    [57]

    Gouesbet G, Gréhan G, Maheu B 1990 J. Opt. Soc. Am. A 7 998Google Scholar

    [58]

    Doicu A, Wriedt T 1997 Appl. Opt. 36 2971Google Scholar

    [59]

    Brown A J 2014 J. Opt. Soc. Am. A 31 2789Google Scholar

    [60]

    Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton: Princeton University Press) pp24−37

    [61]

    Lakhtakia A 1994 Beltrami Fields in Chiral Media (World Scientific Pub. Co. Inc. ) pp5−26

    [62]

    Sarkar D, Halas N J 1997 Phys. Rev. E 56 1102Google Scholar

    [63]

    Aden A L, Kerker M 1951 J. Appl. Phys. 22 1242Google Scholar

    [64]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2013 Opt. Express 21 8677Google Scholar

  • 图 1  两束高斯波束照射多层手性粒子示意图

    Fig. 1.  Structure plan of nonuniform chiral layered particles irradiated by DGBS

    图 2  具有相同偏振角的反向传播双高斯波束$zox$平面强度分布图 (a)${w_{01}}\ ( {w_{02}} ) = 1.7\lambda $; (b)${w_{01}} ({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $

    Fig. 2.  Intensity distribution of counter propagating DGBs in $zox$ plane with different $ {w_1},\; {w_2} $: (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b) ${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $.

    图 3  图2相比具有不同偏振角的反向传播双高斯波束$zox$平面强度分布图 (a)${w_{01}}({w_{02}}) = 1.7\lambda $; (b)${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $

    Fig. 3.  Intensity distribution of counter propagating DGBs in $zox$ plane with different ${\beta _1}$, ${\beta _2}$ compared with Fig. 2: (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b) ${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $.

    图 4  图2相比具有不同入射角度的双高斯波束$zox$平面强度分布图 (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b)${w_{01}}({w_{02}}) = 1.8\lambda $; (c)${w_{01}}({w_{02}}) = 1.9\lambda $

    Fig. 4.  Intensity distribution of counter propagating DGBs in $zox$ plane with different ${\alpha _1},\; {\alpha _2}$ compared with Fig. 2: (a) ${w_{01}}({w_{02}}) = 1.7\lambda $; (b) ${w_{01}}({w_{02}}) = 1.8\lambda $; (c) ${w_{01}}({w_{02}}) = 1.9\lambda $.

    图 5  多层手性粒子对单高斯光束轴向辐射力与文献结果进行对比

    Fig. 5.  Comparison of radiative force results for multilayer chiral spherical particles with a single Gaussian beam.

    图 6  双高斯波束对各向同性介质球的轴向辐射力

    Fig. 6.  Axial radiation force of DGBS on isotropic particle.

    图 7  不同束腰半径下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$;(b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Fig. 7.  Radiative force of DGBS in different girdle radii on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 8  不同偏振角下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$;(b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Fig. 8.  Radiative force of DGBS in different polarization angles on double-layer chiral sphere; (a) Radiative force along the z-axis ${F_z}$; (b) radiative force along the x-axis ${F_x}$; (c) radiative force along the y-axis ${F_y}$.

    图 9  不同内层手性下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$; (d)双高斯波束对双层手性球远场散射RCS

    Fig. 9.  Radiative force of DGBS in different inner layer chiral on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$; (d) the RCS of dual Gaussian beams scattering double-layer chiral sphere.

    图 10  不同外层手性下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Fig. 10.  Radiative force of DGBS in different outer layer chiral on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 11  不同球内层半径下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Fig. 11.  Radiative force of DGBS in different radii of the inner layers on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 12  不同球外层半径下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Fig. 12.  Radiative force of DGBS in different radii of the outer layers on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 13  不同偏振状态下, 双高斯波束入射双层手性球的辐射力随轴(横)向位置的变化曲线 (a)沿z轴辐射力${F_z}$; (b)沿x轴辐射力${F_x}$; (c)沿y轴辐射力${F_y}$

    Fig. 13.  Radiative force of DGBS in different polarization states on double-layer chiral sphere: (a) z-axis radiative force ${F_z}$; (b) x-axis radiative force ${F_x}$; (c) y-axis radiative force ${F_y}$.

    图 14  折射率由内向外逐层减小时, 辐射力随轴向位置变化曲线

    Fig. 14.  Curves of radiative force when refractive index decreases layer by layer from inside to outside.

    图 15  折射率由内向外逐层增大时, 辐射力随轴向位置变化曲线

    Fig. 15.  Curves of radiative force when refractive index increases layer by layer from inside to outside.

  • [1]

    Ashkin A 1970 Phys. Rev. Lett. 24 156Google Scholar

    [2]

    Ashkin A 1980 Science 210 1081Google Scholar

    [3]

    Leach J, Howard D, Roberts S, Gibson G, Gothard D, Cooper J, Buttery L 2009 J. Mod. Optic. 56 448Google Scholar

    [4]

    Molloy J E, Dholakia K, Padgett M J 2003 J. Mod. Optic. 50 1501Google Scholar

    [5]

    Parlatan U, Başar G, Başar G 2019 J. Mod. Optic. 66 228Google Scholar

    [6]

    Jordan P, Clare H, Flendrig L, Leach J, Cooper J, Padgett M 2004 J. Mod. Optic. 51 627Google Scholar

    [7]

    Tang Q, Liu P Z, Tang S 2022 Chin. Phys. B 31 044301Google Scholar

    [8]

    Barton J P, Alexander D R, Schaub S A 1989 J. Appl. Phys. 66 4594Google Scholar

    [9]

    Yang A H, Moore S D, Schmidt B S, Klug M, Lipson M, Erickson D 2009 Nature 457 71Google Scholar

    [10]

    Padgett M, Bowman R 2011 Nat. Photon. 5 343Google Scholar

    [11]

    Wang Z L, Yin J P 2008 Chin. Phys. B 17 2466Google Scholar

    [12]

    Kiselev A D, Plutenko D O 2016 Phys. Rev. A 94 013804Google Scholar

    [13]

    Zang Y C, Lin W J, Su C, Wu P F 2021 Chin. Phys. B 30 044301Google Scholar

    [14]

    Dong F B, Chang C H, Jun F H, Yi W 2009 Chin. Phys. B 18 2853Google Scholar

    [15]

    Ng J, Lin Z F, Chan C T 2010 Phys. Rev. Lett. 104 103601Google Scholar

    [16]

    Liu X Y, Sun C, Deng D M 2021 Chin. Phys. B 30 024202Google Scholar

    [17]

    王焱, 彭妙, 程伟, 彭政, 成浩, 臧圣寅, 刘浩, 任孝东, 帅雨贝, 黄承志, 吴加贵, 杨俊波 2023 物理学报 72 027801Google Scholar

    Wang Y, Peng M, Cheng W, Peng Z, Cheng H, Zang S Y, Liu H, Ren X D, Shuai Y B, Huang C Z, Wu J G, Yang J B 2023 Acta Phys. Sin. 72 027801Google Scholar

    [18]

    殷杰, 陶超, 刘晓峻 2015 物理学报 64 098102Google Scholar

    Yin J, Tao C, Liu X J 2015 Acta Phys. Sin. 64 098102Google Scholar

    [19]

    Ashkin A, Dziedzic J M 1971 Appl. Phys. Lett. 19 283Google Scholar

    [20]

    Zemánek P, Jonáš A, Šrámek L, Liška M 1998 Opt. Commun. 151 273Google Scholar

    [21]

    Zemánek P, Jonáš A, Liška M 2002 J. Opt. Soc. Am. A 19 1025Google Scholar

    [22]

    Gauthier R C, Frangioudakis A 2000 Appl. Opt. 39 26Google Scholar

    [23]

    Ren K F, Greha G, Gouesbet G 1994 Opt. Commun. 108 343Google Scholar

    [24]

    Gouesbet G, Lock J A 1994 J. Opt. Soc. Am. A 11 2516Google Scholar

    [25]

    Zemánek P, Jonáš A, Jákl P, Šerý M, Liška M 2003 Opt. Commun. 220 401Google Scholar

    [26]

    Cizmar T, Garces-Chavez V, Dholakia K, Zemanek P 2004 Opt. Trap. Micro. 5514 643Google Scholar

    [27]

    Van der Horst A, van Oostrum P D J, Moroz A, van Blaaderen A, Dogterom M 2008 Appl. Opt. 47 3196Google Scholar

    [28]

    Zhao L, Li Y, Qi J, Xu J, Sun Q 2010 Opt. Express 18 5724Google Scholar

    [29]

    Zhang T, Mahdy M R C, Dewan S S, Hossain M N, Rivy H M, Masud N, Jony Z R 2018 arXiv: 1811.01874 [physics. optics]

    [30]

    Li Z J, Li S, Li H Y, Qu T, Shang Q C 2021 J. Opt. Soc. Am. A 38 616Google Scholar

    [31]

    Wang S L, Liu X, Mourdikoudis S, Chen J, Fu W W, Sofer Z, Zhang Y, Zhang S P, Zheng G C 2022 ACS Nano. 16 19789Google Scholar

    [32]

    马晓亮, 李雄, 郭迎辉, 赵泽宇, 罗先刚 2017 物理学报 66 147802Google Scholar

    Ma X L, Li X, Guo Y H, Zhao Z Y, Luo X G 2017 Acta Phys. Sin. 66 147802Google Scholar

    [33]

    Rohrbach A, Stelzer E H K 2001 J. Opt. Soc. Am. A 18 839Google Scholar

    [34]

    史书姝, 肖姗, 许秀来 2022 物理学报 71 067801Google Scholar

    Shi S S, Xiao S, Xu X L 2022 Acta Phys. Sin. 71 067801Google Scholar

    [35]

    王志全, 施卫 2022 物理学报 71 188704Google Scholar

    Wang Z Q, Shi W 2022 Acta Phys. Sin. 71 188704Google Scholar

    [36]

    Habashi A, Ghobadi C, Nourinia J, R Naderali 2023 Opt. Commun. 547 129840Google Scholar

    [37]

    米利, 周宏伟, 孙祉伟, 刘丽霞, 徐升华 2013 物理学报 62 134704Google Scholar

    Mi L, Zhou H W, Sun Z W, Liu L X, Xu S H 2013 Acta Phys. Sin. 62 134704Google Scholar

    [38]

    Worasawate D, Mautz J R, Arvas E 2003 IEEE Trans. Antennas Propag. 51 1077Google Scholar

    [39]

    Yuceer M, Mautz J R, Arvas E 2005 IEEE Trans. Antennas Propag. 53 1163Google Scholar

    [40]

    Demir V, Elsherbeni A Z, Arvas E 2005 IEEE Trans. Antennas Propag. 53 3374Google Scholar

    [41]

    Kuzu L, Demir V, Elsherbeni A Z, Arvas E 2007 Prog. Electromagn. Res. 67 1Google Scholar

    [42]

    Cooray M F R, Ciric I R 1993 J. Opt. Soc. Am. A 10 1197Google Scholar

    [43]

    Ermutlu M E, Sihvola A H 1994 Prog. Electromagn. Res. 9 87Google Scholar

    [44]

    Jaggard D L, Liu J C 1999 IEEE Trans. Antennas Propag. 47 1201Google Scholar

    [45]

    Yan B, Liu C H, Zhang H Y, Shi Y 2015 Opt. Commun. 338 261Google Scholar

    [46]

    Wang W J, Sun Y F, Zhang H Y 2017 Opt. Commun. 385 54Google Scholar

    [47]

    Gao X, Zhang H 2017 Optik 129 43Google Scholar

    [48]

    Zheng M, Zhang H Y, Sun Y F, Wang Z G 2015 J. Quant. Spectrosc. Ra. 151 192Google Scholar

    [49]

    Li L W, Dan Y, Leong M S, Kong J A 1999 Prog. Electromagn. Res. 23 239Google Scholar

    [50]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2016 J. Quant. Spectrosc. Ra. 173 72Google Scholar

    [51]

    Qu T, Wu Z S, Shang Q C, Wu J, Bai L 2018 J. Quant. Spectrosc. Ra. 217 363Google Scholar

    [52]

    Bai J, Liu X, Ge C X, Li Z J, Xiao C, Wu Z S, Shang Q C 2024 Opt. Commun. 554 130136Google Scholar

    [53]

    Edmonds A R, Mendlowitz H 1958 Phys. Today 11 34Google Scholar

    [54]

    Gouesbet G, Gréhan G 1999 J Opt. A-Pure. Appl. Opt. 1 706Google Scholar

    [55]

    Geng Y L, Wu X B, Li L W, Guan B R 2004 Phys. Rev. E 70 056609Google Scholar

    [56]

    Lock J A, Gouesbet G 1994 J. Opt. Soc. Am. A 11 2503Google Scholar

    [57]

    Gouesbet G, Gréhan G, Maheu B 1990 J. Opt. Soc. Am. A 7 998Google Scholar

    [58]

    Doicu A, Wriedt T 1997 Appl. Opt. 36 2971Google Scholar

    [59]

    Brown A J 2014 J. Opt. Soc. Am. A 31 2789Google Scholar

    [60]

    Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton: Princeton University Press) pp24−37

    [61]

    Lakhtakia A 1994 Beltrami Fields in Chiral Media (World Scientific Pub. Co. Inc. ) pp5−26

    [62]

    Sarkar D, Halas N J 1997 Phys. Rev. E 56 1102Google Scholar

    [63]

    Aden A L, Kerker M 1951 J. Appl. Phys. 22 1242Google Scholar

    [64]

    Shang Q C, Wu Z S, Qu T, Li Z J, Bai L 2013 Opt. Express 21 8677Google Scholar

  • [1] 刘腾, 乔玉配, 宫门阳, 刘晓宙. 有界黏性流体中自由球形粒子的声辐射力. 物理学报, 2025, 74(1): 014301. doi: 10.7498/aps.74.20241354
    [2] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力. 物理学报, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [3] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输. 物理学报, 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [4] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [5] 白靖, 葛城显, 何浪, 刘轩, 吴振森. 椭圆波束对非均匀手征分层粒子的俘获特性研究. 物理学报, 2022, 71(10): 104208. doi: 10.7498/aps.71.20212284
    [6] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析. 物理学报, 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [7] 靳晓琴, 许勇, 张慧清. 非高斯噪声驱动下一维双稳系统的逻辑操作. 物理学报, 2013, 62(19): 190510. doi: 10.7498/aps.62.190510
    [8] 赖晓磊. 高聚焦高斯光束对左手性材料球轴向力的光线模型计算. 物理学报, 2013, 62(18): 184201. doi: 10.7498/aps.62.184201
    [9] 程科, 钟先琼, 向安平. 相干和非相干合成光束对金属瑞利粒子的光学俘获. 物理学报, 2012, 61(7): 074202. doi: 10.7498/aps.61.074202
    [10] 韩国霞, 韩一平. 双球粒子对任意入射单波束及双波束的散射. 物理学报, 2010, 59(4): 2434-2442. doi: 10.7498/aps.59.2434
    [11] 蒋云峰, 陆璇辉, 赵承良. 高度聚焦的余弦高斯光束对瑞利粒子的辐射力分析. 物理学报, 2010, 59(6): 3959-3964. doi: 10.7498/aps.59.3959
    [12] 郭培荣, 徐伟, 刘迪. 非高斯噪声驱动的双奇异随机系统的熵流与熵产生. 物理学报, 2009, 58(8): 5179-5185. doi: 10.7498/aps.58.5179
    [13] 韩国霞, 韩一平. 激光对含偏心核球形粒子的辐射俘获力. 物理学报, 2009, 58(9): 6167-6173. doi: 10.7498/aps.58.6167
    [14] 李海英, 吴振森. 二维高斯波束对多层球粒子电磁散射的解析解. 物理学报, 2008, 57(2): 833-838. doi: 10.7498/aps.57.833
    [15] 韩一平, 杜云刚, 张华永. 高斯波束对双层粒子的辐射俘获力. 物理学报, 2006, 55(9): 4557-4562. doi: 10.7498/aps.55.4557
    [16] 白 璐, 吴振森, 陈 辉, 郭立新. 高斯波束入射下串粒子的散射问题. 物理学报, 2005, 54(5): 2025-2029. doi: 10.7498/aps.54.2025
    [17] 吴 鹏, 韩一平, 刘德芳. 大粒子对高斯波束散射的数值模拟. 物理学报, 2005, 54(6): 2676-2679. doi: 10.7498/aps.54.2676
    [18] 李 微, 赵同军, 郭鸿涌, 纪 青, 展 永. 布朗马达的非均匀高斯跃迁模型. 物理学报, 2004, 53(11): 3684-3689. doi: 10.7498/aps.53.3684
    [19] 梁子长, 金亚秋. 非均匀随机散射介质层的多次散射和热辐射的分层迭代解. 物理学报, 2003, 52(6): 1319-1325. doi: 10.7498/aps.52.1319
    [20] 李芳昱, 唐孟希. 空间阵列的狭窄波束型引力辐射. 物理学报, 1987, 36(12): 1570-1582. doi: 10.7498/aps.36.1570
计量
  • 文章访问数:  1168
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-07-29
  • 上网日期:  2024-08-20
  • 刊出日期:  2024-09-20

/

返回文章
返回