-
采用推导的部分相干线刃型-螺旋型混合位错光束在生物组织传输中的交叉谱密度函数与矩阵, 数值模拟了人体真皮组织传输中, 无量纲参数a和线刃型位错离轴距离b对源平面光束归一化光强和相位分布的影响; 相同两点间、不同两点间光束偏振态的变化, 及其与4个光束参数(a、b、空间相关长度σxy, σyy)以及传输距离z的关系. 结果表明: 归一化光强为非轴对称分布. a绝对值越大, 主峰越圆润; b值越大, 次峰越低. 在源平面存在一个相干涡旋和一个线刃型位错; a的符号和大小会影响相位分布; b值越大, 线刃型位错离原点越远. 在源平面处, 空间相同两点的偏振度和椭圆率与光束参数选取无关, 方位角仅与b和σyy有关; 空间不同两点的偏振态参量都只与σxy和σyy有关. 在足够远处, 偏振态各自趋于一定值. 传输中, a的绝对值一定正负不影响偏振态的大小; 随着b增大, 偏振态曲线极值次数减小, 突变的次数增加; σxy取值不同时, 相同两点偏振态变化的差异主要集中在极值附近, 不同两点偏振态变化的差异主要集中在初值和极值附近; |σxx-σyy|大小引起了偏振态变化规律的多样性.
-
关键词:
- 线刃型-螺旋型混合位错光束 /
- 生物组织 /
- 交叉谱密度 /
- 偏振态
Objective The optical information change of beams acting on biological tissue can get an insight into the new optical effects of tissue, and even can provide a theoretical basis for developing biphotonic medical diagnosis and therapy technologies. Polarization technology is also widely used in the field of biological detection due to its advantages of non-contact, rich information and without staining markers. In this work, the polarization behaviors of partially coherent screw-linear edge mixed dislocation beam transmitting in biological tissue are analyzed and explored. Simultaneously, in order to more clearly and more intuitively understand a mixed dislocation beam, both the normalized intensities and phase distributions at source plane for different parameters a and b are also discussed. We hope that the obtained results will provide theoretical and experimental foundation for expanding the application of singularity beams in biological tissue imaging technology. Method By combining the Schell term with the field distribution of the screw-linear edge mixed dislocation beam at the source plane, and based on the generalized Huygens-Fresnel principle, the analytical expressions of the cross-spectral density matrix elements of partially coherent screw-linear edge dislocation beam propagating in biological tissues are derived. Adopting the unified theory of coherence and polarization, the polarization behaviors of the beams can be investigated in detail. Results At the source plane, the intensity has a non axisymmetric distribution, and there exists a coherent vortex with a topological charge size of 1 and a linear edge dislocation. The sign of a is related to the rotation direction of the phase singularity. The larger the value of b, the farther the linear edge dislocation is from the origin. At the source plane, the degree of polarization and ellipticity between the two identical points are independent of the four parameters: dimensionless parameter a, off-axis distance of edge dislocation b, spatial self-correlation length σyy, and spatial mutual-correlation length σxy, the orientation angle is only independent of a and σxy; the polarization of two different points is independent of a and b, but is related to σyy and σxy. In transmission, the polarization degrees and ellipticity of two different points fluctuate greatly and the orientation angle displays less fluctuation. Finally, all the polarization state parameters tend to be their corresponding values, respectively. Conclusions The results show that when b is smaller, the linear edge dislocation is paraxial and plays an important role in the polarization state change; when b is larger, the polarization state changes of the screw-linear edge mixed dislocation beam will tend to be the pattern of spiral beams. The absolute value of the difference between σyy and σxy is also one of main factors influencing the polarization state. The sign of a does not affect the change in polarization state, but its magnitude can influe the change of speed. Due to more complex factors determining the correlation fluctuations between different points in the light field, the changes of two different points are more sensitive than those of the two identical points in shallow biological tissue. Beams with different parameters can be selected for different application requirements. -
Keywords:
- mixed screw-linear edge dislocation beam /
- biological tissue /
- cross-spectral density /
- polarization state
[1] Zhou Y, Cheng K, Sun X, Zhao M R, Chen G 2022 J. Mod. Opt. 69 233Google Scholar
[2] 杨宁, 赵亮, 许颖, 徐勇根 2022 激光与红外 52 1167Google Scholar
Yang N, Zhao L, Xu Y, Xu Y G 2022 Laser Infrared 52 1167Google Scholar
[3] 乔文龙, 周亮, 刘朝晖, 龚勇辉, 姜乐, 吕媛媛, 赵鹤童 2022 光谱学与光谱分析 42 1070Google Scholar
Qiao W L, Zhou L, Liu Z H, Gong Y H, Jiang L, Lu Y Y, Zhao H T 2022 Spectrosc. Spect. Anal. 42 1070Google Scholar
[4] Zhao C G, Yin X J, Yang C, Wang J, Li J H 2023 Microw. Opt. Techn. Let. 65 1054Google Scholar
[5] 王亚伟, 刘莹, 卜敏, 王立峰 2008 激光与红外 38 7Google Scholar
Wang Y W, Liu Y, Bu M, Wang L F 2008 Laser Infrared 38 7Google Scholar
[6] 杜玲艳, 詹旭, 雷跃荣, 宋弘, 文宇桥 2009 红外与激光工程 38 466Google Scholar
Du L Y, Zhan X, Lei Y R, Song H, Wen Y Q 2009 Infrared Laser Eng. 38 466Google Scholar
[7] Sdobnov A, Ushenko V A, Trifonyuk L, Dubolazov O V, Ushenko Y A, Ushenko A G, Soltys I V, Gantyuk V K, Bykov A, Meglinski I 2023 Opt. Laser. Eng. 171 107806Google Scholar
[8] 张钰新, 樊志鹏, 翟好宇, 何宏辉, 王毅, 何超, 马辉 2023 中国激光 50 111Google Scholar
Zhang Y X, Fan Z P, Zhai H Y, He H H, Wang Y, He C, Ma H 2023 Chin. J. Lasers 50 111Google Scholar
[9] Zhang W H, Wang L, Wang W N, Zhao S M 2019 OSA Continuum 2 3281Google Scholar
[10] Liang Q Y, Yang D Y, Zhang Y X, Zheng Y, Hu L F 2020 OSA Continuum 3 2429Google Scholar
[11] 黄慧, 寿倩, 陈志超 2020 激光与光电子学进展 57 244Google Scholar
Huang H, Shou Q, Chen Z C 2020 Laser Optoelectron. Prog. 57 244Google Scholar
[12] 叶东, 李俊瑶, 李宗辰, 张颐 2024 激光技术 48 261Google Scholar
Ye D, Li J Y, Li Z C, Zhang Y 2024 Laser Technol. 48 261Google Scholar
[13] Biton N, Kupferman J, Arnon S 2021 Sci. Rep. 11 2047Google Scholar
[14] 段美玲, 杜娇, 赵志国, 黄小东, 高燕琴, 丁超亮 2021 光子学报 50 0929001Google Scholar
Duan M L, Du J, Zhao Z G, Huang X D, Gao Y Q, Ding C L 2021 Acta Photonica Sin. 50 0929001Google Scholar
[15] Chen K, Ma Z Y, Hu Y Y 2023 Chin. Phys. B 32 024208Google Scholar
[16] Zhou Y Q, Cui Z W, Han Y P 2022 Opt. Express 30 23448Google Scholar
[17] 闫皙玉, 杨艳芳, 何英, 李路路, 王俊杰 2022 光学学报 42 184Google Scholar
Yan X Y, Yang Y F, He Y, Li L L, Wang J J 2022 Acta Opt. Sin. 42 184Google Scholar
[18] Gao P H, Lu M H, Li J Y 2023 Opt. Continuum 2 2374Google Scholar
[19] Cao J, Tong R F, Huang K, Li Y Q, Xu Y G 2024 J. Opt. Soc. Am. A 41 371Google Scholar
[20] 殷子昂, 段美玲 2024 光学技术 50 99Google Scholar
Yin Z A, Duan M L 2024 Opt. Tech. 50 99Google Scholar
[21] Gao P H, Bai L, Li J L 2020 OSA Continuum 3 2997Google Scholar
[22] Gao P H, Lie J H, Cheng K, Duan M L 2017 Opt. Appl. 47 471Google Scholar
[23] Wang Y K, Bai L, Gao P H 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 pp1–3
[24] Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press) pp59–60
[25] Wolf E, 蒲继雄 2014 光的相干与偏振理论导论 (北京: 北京大学出版社) 第210页
Wolf E, Pu J X 2014 Introduction to the Theory of Coherence and Polarization of Light (Beijing: Peking University Press) p210
[26] Kotlyar V, Kovalev A, Porfirev A 2017 Phys. Rev. A 95 053805Google Scholar
[27] Ishimaru A 1977 Appl. Opt. 16 3190Google Scholar
[28] Roychowdhury H, Korotkova O 2005 Opt. Commun. A 249 379Google Scholar
[29] Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (Washington: SPIE Press) p820
[30] Shirron J J 1997 Siam. Rev. 39 803
[31] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p170
[32] Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164Google Scholar
[33] 贺改梅, 段美玲, 殷子昂, 单晶, 冯姣姣 2024 光学学报 44 0217002Google Scholar
He G M, Duan M L, Yin Z A, Shan J, Feng J J 2024 Acta Opt. Sin. 44 0217002Google Scholar
[34] Deng Y, Zeng S Q, Luo Q M, Zhang Z H, Fu L 2008 Opt. Lett. 33 77Google Scholar
-
-
[1] Zhou Y, Cheng K, Sun X, Zhao M R, Chen G 2022 J. Mod. Opt. 69 233Google Scholar
[2] 杨宁, 赵亮, 许颖, 徐勇根 2022 激光与红外 52 1167Google Scholar
Yang N, Zhao L, Xu Y, Xu Y G 2022 Laser Infrared 52 1167Google Scholar
[3] 乔文龙, 周亮, 刘朝晖, 龚勇辉, 姜乐, 吕媛媛, 赵鹤童 2022 光谱学与光谱分析 42 1070Google Scholar
Qiao W L, Zhou L, Liu Z H, Gong Y H, Jiang L, Lu Y Y, Zhao H T 2022 Spectrosc. Spect. Anal. 42 1070Google Scholar
[4] Zhao C G, Yin X J, Yang C, Wang J, Li J H 2023 Microw. Opt. Techn. Let. 65 1054Google Scholar
[5] 王亚伟, 刘莹, 卜敏, 王立峰 2008 激光与红外 38 7Google Scholar
Wang Y W, Liu Y, Bu M, Wang L F 2008 Laser Infrared 38 7Google Scholar
[6] 杜玲艳, 詹旭, 雷跃荣, 宋弘, 文宇桥 2009 红外与激光工程 38 466Google Scholar
Du L Y, Zhan X, Lei Y R, Song H, Wen Y Q 2009 Infrared Laser Eng. 38 466Google Scholar
[7] Sdobnov A, Ushenko V A, Trifonyuk L, Dubolazov O V, Ushenko Y A, Ushenko A G, Soltys I V, Gantyuk V K, Bykov A, Meglinski I 2023 Opt. Laser. Eng. 171 107806Google Scholar
[8] 张钰新, 樊志鹏, 翟好宇, 何宏辉, 王毅, 何超, 马辉 2023 中国激光 50 111Google Scholar
Zhang Y X, Fan Z P, Zhai H Y, He H H, Wang Y, He C, Ma H 2023 Chin. J. Lasers 50 111Google Scholar
[9] Zhang W H, Wang L, Wang W N, Zhao S M 2019 OSA Continuum 2 3281Google Scholar
[10] Liang Q Y, Yang D Y, Zhang Y X, Zheng Y, Hu L F 2020 OSA Continuum 3 2429Google Scholar
[11] 黄慧, 寿倩, 陈志超 2020 激光与光电子学进展 57 244Google Scholar
Huang H, Shou Q, Chen Z C 2020 Laser Optoelectron. Prog. 57 244Google Scholar
[12] 叶东, 李俊瑶, 李宗辰, 张颐 2024 激光技术 48 261Google Scholar
Ye D, Li J Y, Li Z C, Zhang Y 2024 Laser Technol. 48 261Google Scholar
[13] Biton N, Kupferman J, Arnon S 2021 Sci. Rep. 11 2047Google Scholar
[14] 段美玲, 杜娇, 赵志国, 黄小东, 高燕琴, 丁超亮 2021 光子学报 50 0929001Google Scholar
Duan M L, Du J, Zhao Z G, Huang X D, Gao Y Q, Ding C L 2021 Acta Photonica Sin. 50 0929001Google Scholar
[15] Chen K, Ma Z Y, Hu Y Y 2023 Chin. Phys. B 32 024208Google Scholar
[16] Zhou Y Q, Cui Z W, Han Y P 2022 Opt. Express 30 23448Google Scholar
[17] 闫皙玉, 杨艳芳, 何英, 李路路, 王俊杰 2022 光学学报 42 184Google Scholar
Yan X Y, Yang Y F, He Y, Li L L, Wang J J 2022 Acta Opt. Sin. 42 184Google Scholar
[18] Gao P H, Lu M H, Li J Y 2023 Opt. Continuum 2 2374Google Scholar
[19] Cao J, Tong R F, Huang K, Li Y Q, Xu Y G 2024 J. Opt. Soc. Am. A 41 371Google Scholar
[20] 殷子昂, 段美玲 2024 光学技术 50 99Google Scholar
Yin Z A, Duan M L 2024 Opt. Tech. 50 99Google Scholar
[21] Gao P H, Bai L, Li J L 2020 OSA Continuum 3 2997Google Scholar
[22] Gao P H, Lie J H, Cheng K, Duan M L 2017 Opt. Appl. 47 471Google Scholar
[23] Wang Y K, Bai L, Gao P H 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference Taiyuan, China, July 18–21, 2019 pp1–3
[24] Wolf E 2007 Introduction to the Theory of Coherence and Polarization of Light (Cambridge: Cambridge University Press) pp59–60
[25] Wolf E, 蒲继雄 2014 光的相干与偏振理论导论 (北京: 北京大学出版社) 第210页
Wolf E, Pu J X 2014 Introduction to the Theory of Coherence and Polarization of Light (Beijing: Peking University Press) p210
[26] Kotlyar V, Kovalev A, Porfirev A 2017 Phys. Rev. A 95 053805Google Scholar
[27] Ishimaru A 1977 Appl. Opt. 16 3190Google Scholar
[28] Roychowdhury H, Korotkova O 2005 Opt. Commun. A 249 379Google Scholar
[29] Andrews L C, Phillips R L 2005 Laser Beam Propagation Through Random Media (Washington: SPIE Press) p820
[30] Shirron J J 1997 Siam. Rev. 39 803
[31] Mandel L, Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p170
[32] Freund I, Shvartsman N 1994 Phys. Rev. A 50 5164Google Scholar
[33] 贺改梅, 段美玲, 殷子昂, 单晶, 冯姣姣 2024 光学学报 44 0217002Google Scholar
He G M, Duan M L, Yin Z A, Shan J, Feng J J 2024 Acta Opt. Sin. 44 0217002Google Scholar
[34] Deng Y, Zeng S Q, Luo Q M, Zhang Z H, Fu L 2008 Opt. Lett. 33 77Google Scholar
计量
- 文章访问数: 1256
- PDF下载量: 30
- 被引次数: 0