-
研究了两光束的合成方式(相干和非相干合成)对俘获金属瑞利粒子的辐射力和稳定性的影响,着重研究了辐射力与合成方式、离轴距离、相干参数和粒子半径的关系.结果表明,不同合成方式下,离轴距离和相干参数都分别存在临界值dc和c,在0ddc或0c时,焦面处光强呈类高斯分布,此时横向梯度力能作为回复力提供稳定平衡点;而在ddc或c时,焦面处光强呈中心凹陷分布,此时横向梯度力不能作为回复力俘获金属瑞利粒子.在0ddc时,与非相干合成光束比较,相干合成光束在焦面处光强、辐射力、俘获刚性和纵向俘获范围更大.因此,适当选择合成方式,较小离轴距离和较低相干参数可有利于合成光束对金属瑞利粒子的俘获.The effect of two beam combination schemes, i.e. combination of coherent and incoherent beam, on the radiation force and stability in trapping metallic Rayleigh particles is studied, where the dependences of the radiation force on beam combination scheme, off-axis distance, coherence parameter and particle radius are stressed and illustrated by numerical examples. It is shown that there exist critical values dc and c for different combination schemes. For 0ddc or 0cthe Gaussianthe Gaussian-like intensity profile takes place in the geometrical focal plane, so that the transverse gradient force can act as a restoration force to provide stable equilibrium point. Fordd0,c or00,cthe transverse gradient force can not trap metallic Rayleigh particles. For 0ddc the intensity, the radiation force, the trapping stiffness, and the longitudinal trapping range of coherently combined beam are larger than those of incoherently combined beams. Therefore, a suitable choice of combination scheme, smaller off-axis distance and coherence parameter is beneficial to trapping metallic Rayleigh particles in the use of combined beams.
-
Keywords:
- optical trapping /
- radiation force /
- coherent and incoherent combinations /
- metallic Rayleigh particle
[1] Ashkin A 1970 Phys.Rev.Lett.24 156
[2] Svoboda K,Block S M 1994 Opt.Lett.19 930
[3] Hiromitsu F,Ichirou Y 1998 Opt.Lett.23 216
[4] Garcés-Chávez V,Roskey D SummersMD 2004 Appl.Phys.Lett.85 4001
[5] Wang L G,Zhao C L 2007 Opt.Express 15 10615
[6] Wang L G,Zhao C L,Wang L Q 2007 Opt.Lett.32 1393
[7] Zhao C L,Wang L G,Lu X H 2007 Phys.Lett.A 363 502
[8] Zhao C L,Cai Y J,Lu X H 2009 Opt.Express 17 1753
[9] Yi X N,Liu J S,Chen H,Du Q J 2010 Chin.Phys.B 19 114204
[10] Zhan Q W 2004 Opt.Express 15 3377
[11] Li Y 2002 Opt.Lett.27 1007
[12] Harada Y,Asakura T 1996 Opt.Commun.124 529
[13] Turunen J,Friberg A T 1986 Opt.& Laser Tech.18 259
[14] Cheng K,L¨u B D 2008 J.Mod.Opt.55 2751
[15] Neuman K C,Block S M 2004 Rev.Sci.Instrum.75 2787
[16] Gahagan K T,Swartzlander G A 1996 Opt.Lett.21 827 074202-8
-
[1] Ashkin A 1970 Phys.Rev.Lett.24 156
[2] Svoboda K,Block S M 1994 Opt.Lett.19 930
[3] Hiromitsu F,Ichirou Y 1998 Opt.Lett.23 216
[4] Garcés-Chávez V,Roskey D SummersMD 2004 Appl.Phys.Lett.85 4001
[5] Wang L G,Zhao C L 2007 Opt.Express 15 10615
[6] Wang L G,Zhao C L,Wang L Q 2007 Opt.Lett.32 1393
[7] Zhao C L,Wang L G,Lu X H 2007 Phys.Lett.A 363 502
[8] Zhao C L,Cai Y J,Lu X H 2009 Opt.Express 17 1753
[9] Yi X N,Liu J S,Chen H,Du Q J 2010 Chin.Phys.B 19 114204
[10] Zhan Q W 2004 Opt.Express 15 3377
[11] Li Y 2002 Opt.Lett.27 1007
[12] Harada Y,Asakura T 1996 Opt.Commun.124 529
[13] Turunen J,Friberg A T 1986 Opt.& Laser Tech.18 259
[14] Cheng K,L¨u B D 2008 J.Mod.Opt.55 2751
[15] Neuman K C,Block S M 2004 Rev.Sci.Instrum.75 2787
[16] Gahagan K T,Swartzlander G A 1996 Opt.Lett.21 827 074202-8
计量
- 文章访问数: 7511
- PDF下载量: 727
- 被引次数: 0