搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自发辐射相干实现光学前驱动场

巴诺 王磊 王海华 李东飞 王丹 严立云

引用本文:
Citation:

基于自发辐射相干实现光学前驱动场

巴诺, 王磊, 王海华, 李东飞, 王丹, 严立云

Optical precursors via spontaneously generated coherence

Ba Nuo, Wang Lei, Wang Hai-Hua, Li Dong-Fei, Wang Dan, Yan Li-Yun
PDF
导出引用
  • 研究一个具有两个靠得足够近激发能级的双Lambda模型, 在矩形脉冲中分离出光学前驱动场. 当耦合场是大失谐时, 该原子系统在自发辐射相干效应的影响下产生一个透明窗口并伴随着陡峭的色散曲线. 因此, 由于透明窗口中的慢光效应可以使光学前驱动场从主脉冲场中分离出来. 另外, 我们通过调控脉冲波形序列研究探测场相位和幅值的累积光学前驱动波. 数值结果表明: 由于累积光前驱动场与脉冲主场的相长干涉大大地提高瞬态脉冲的能量.
    Optical precursors were first studied by Sommerfield and Brillouin in 1914 to resolve the apparent contradictions between fast light propagation and the theory of relativity. They showed theoretically that the front edge of a step-modulated pulse does not interact with the medium and always travels at c because the dispersive material has a finite response time to the optical pulse. The past experimental studies of precursors in classical pulse propagation were always focused on an opaque medium with single or multiple Lorentz absorption lines. In these cases, the precursor signal cannot be separated from the main pulse or otherwise the main field is absorbed. However, the electromagnetically induced transparency (EIT) technique was successfully used to separate precursors from the main pulse due to the slow-light effect in cold atoms. The EIT refers to the absorption suppression or elimination of a probe field through atomic coherence in a certain medium dressed by a strong coupling field. In this paper, a four-level double-lambda atomic system with two upper states coupled to the excited state is explored to separate optical precursors from a square-modulated laser pulse with the effect of spontaneously generated coherence (SGC). The SGC effect occurs in the process of spontaneous emission, in which the atom decays from closely placed upper levels to a single ground level. The quantum interference between the decay channels takes place, which leads to decay induced transparency, thus enhancing the Kerr nonlinearity and amplification without inversion. With the assistance of spontaneously generated coherence, an EIT window appears with steep normal dispersion when the trigger field is far from resonance. Then we can obtain the optical precursors which are separated from the main pulse due to the slow-light effects in the EIT window. In the absence of SGC, the main pulse is absorbed by an opaque medium with Lorentz absorptive lines, so the slow-light effect could not take place. In addition, we obtain the stacked optical precursors with the input probe field amplitude or phase modulated by designing a series of square pulses. For the amplitude modulation case, the peak power reaches about 4.5 times that of the input pulse. With the phase modulation we obtain a transient pulse with a peak power of 14 times that of the input, as a result of constructive interference between the stacked precursors and main field. We expect these findings to be instructive in devising optical devices for optical communication, detection and medical imaging among other applications.
      通信作者: 巴诺, banuo2008@163.com;wang_lei98@163.com ; 王磊, banuo2008@163.com;wang_lei98@163.com
    • 基金项目: 国家自然科学基金(批准号:11247201)和吉林省教育厅十二五科学研究项目(批准号:20150215)资助的课题.
      Corresponding author: Ba Nuo, banuo2008@163.com;wang_lei98@163.com ; Wang Lei, banuo2008@163.com;wang_lei98@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11247201) and the Twelfth Five-Year Program for Science and Technology of Department of Jilin Province, China (Grant No. 20150215).
    [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [4]

    Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S, Hemmer P R 2001 Phys. Rev. Lett. 88 023602

    [5]

    Jiang Q C, Liu C, Liu J H, Zhang J X 2015 Acta Phys. Sin. 64 094208 (in Chinese) [姜其畅, 刘超, 刘晋宏, 张俊香 2015 物理学报 64 094208]

    [6]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [7]

    Bajcsy M, Zibrov A S, Lukin M D 2003 Nature 426 638

    [8]

    Longdell J J, Fraval E, Sellars M J, Manson N B 2005 Phys. Rev. Lett. 95 063601

    [9]

    Zhang X H, Bao Q Q, Zhang Y, Su M C, Cui C L, Wu J H 2012 Chin. Phys. B 21 054209

    [10]

    Yan Y, Li S J, Tian L, Wang H 2016 Acta Phys. Sin. 65 014205 (in Chinese) [闫妍, 李淑静, 田龙, 王海 2016 物理学报 65 014205]

    [11]

    Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L, Wang H H, Gao J Y 2015 Chin. Phys. B 24 074204

    [12]

    Wang L, Luo M X, Sun J X, Sun Y H, Chen Y, Wei X G, Kang Z H, Wang H H, Gao J Y 2015 Chin. Phys. B 24 064205

    [13]

    Menon S, Argarwal G S 1998 Phys. Rev. A 57 4014

    [14]

    Paspalakis E, Knight P L L 1998 Phys. Rev. Lett. 81 293

    [15]

    Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807

    [16]

    Zhang B, Liu Z X, Xu W C 2013 Acta Phys. Sin. 62 164207 (in Chinese) [张冰, 刘志学, 徐万超 2013 物理学报 62 164207]

    [17]

    Zhu S Y, Chan R C F, Lee C P 1995 Phys. Rev. A 52 710

    [18]

    Xu W H, Wu J H, Gao J Y 2004 Eur. Phys. J. D 30 137

    [19]

    Wan R G, Kou J, Jiang L, Jiang Y, Gao J Y 2011 Phys. Rev. A 83 033824

    [20]

    Ba N, Wang L, Wu X Y, Liu X J, Wang H H, Cui C L, Li A J 2013 Appl. Opt. 52 4264

    [21]

    Yao Y P, Zhang T Y, Kou J, Wan R G 2013 Phys. Lett. A 377 1416

    [22]

    Sommerfeld A 1914 Ann. Phys. 349 177

    [23]

    Brillouin L 1914 Ann. Phys. 349 203

    [24]

    Falcon E, Laroche C, Fauve S 2003 Phys. Rev. Lett. 91 064502

    [25]

    Jeong H, Dawes A M C, Gauthier D J 2006 Phys. Rev. Lett. 96 143901

    [26]

    Lynch F J, Holland R E, Hamermesh M 1960 Phy. Rev. 120 513

    [27]

    Pleshko P, Palocz I 1969 Phys. Rev. Lett 22 1201

    [28]

    Varoquaux E, Williams G A, Avenel O 1986 Phys. Rev. B 34 7617

    [29]

    Choi S H, sterberg U L 2004 Phys. Rev. Lett. 92 193903

    [30]

    Wei D, Chen J F, Loy M M T, Wong G K L, Du S W 2009 Phys. Rev. Lett. 103 093602

    [31]

    Chen J F, Jeong H, Feng L, Loy M M T, Wong G K L, Du S W 2010 Phys. Rev. Lett. 104 223602

    [32]

    Jeong H, Du S W 2009 Phys. Rev. A 79 011802

    [33]

    Chen J F, Wang S, Wei D, Loy M M T, Wong G K L, Du S W 2010 Phys. Rev. A 81 033844

    [34]

    Du S, Belthangady C, Kolchin P, Ying G Y, Harris S E 2008 Opt. Lett. 33 2149

    [35]

    Peng Y D, Niu Y P, Qi Y H, Yao H F, Gong S Q 2011 Phys. Rev. A 83 013812

    [36]

    Peng Y D, Yang A H, Li D H, Zhao X H, Jiang L, Zhang L Y 2013 J. Mod. Opt. 60 1343

    [37]

    Richard A, John P, Richard M 1989 J. Opt. Soc. Am. A 6 1441

    [38]

    Bao Q Q, Fang B, Yang X, Cui C L, Wu J H 2014 J. Opt. Soc. Am. B 31 62

  • [1]

    Harris S E 1997 Phys. Today 50 36

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [4]

    Turukhin A V, Sudarshanam V S, Shahriar M S, Musser J A, Ham B S, Hemmer P R 2001 Phys. Rev. Lett. 88 023602

    [5]

    Jiang Q C, Liu C, Liu J H, Zhang J X 2015 Acta Phys. Sin. 64 094208 (in Chinese) [姜其畅, 刘超, 刘晋宏, 张俊香 2015 物理学报 64 094208]

    [6]

    Liu C, Dutton Z, Behroozi C H, Hau L V 2001 Nature 409 490

    [7]

    Bajcsy M, Zibrov A S, Lukin M D 2003 Nature 426 638

    [8]

    Longdell J J, Fraval E, Sellars M J, Manson N B 2005 Phys. Rev. Lett. 95 063601

    [9]

    Zhang X H, Bao Q Q, Zhang Y, Su M C, Cui C L, Wu J H 2012 Chin. Phys. B 21 054209

    [10]

    Yan Y, Li S J, Tian L, Wang H 2016 Acta Phys. Sin. 65 014205 (in Chinese) [闫妍, 李淑静, 田龙, 王海 2016 物理学报 65 014205]

    [11]

    Wang X X, Sun J X, Sun Y H, Li A J, Chen Y, Zhang X J, Kang Z H, Wang L, Wang H H, Gao J Y 2015 Chin. Phys. B 24 074204

    [12]

    Wang L, Luo M X, Sun J X, Sun Y H, Chen Y, Wei X G, Kang Z H, Wang H H, Gao J Y 2015 Chin. Phys. B 24 064205

    [13]

    Menon S, Argarwal G S 1998 Phys. Rev. A 57 4014

    [14]

    Paspalakis E, Knight P L L 1998 Phys. Rev. Lett. 81 293

    [15]

    Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807

    [16]

    Zhang B, Liu Z X, Xu W C 2013 Acta Phys. Sin. 62 164207 (in Chinese) [张冰, 刘志学, 徐万超 2013 物理学报 62 164207]

    [17]

    Zhu S Y, Chan R C F, Lee C P 1995 Phys. Rev. A 52 710

    [18]

    Xu W H, Wu J H, Gao J Y 2004 Eur. Phys. J. D 30 137

    [19]

    Wan R G, Kou J, Jiang L, Jiang Y, Gao J Y 2011 Phys. Rev. A 83 033824

    [20]

    Ba N, Wang L, Wu X Y, Liu X J, Wang H H, Cui C L, Li A J 2013 Appl. Opt. 52 4264

    [21]

    Yao Y P, Zhang T Y, Kou J, Wan R G 2013 Phys. Lett. A 377 1416

    [22]

    Sommerfeld A 1914 Ann. Phys. 349 177

    [23]

    Brillouin L 1914 Ann. Phys. 349 203

    [24]

    Falcon E, Laroche C, Fauve S 2003 Phys. Rev. Lett. 91 064502

    [25]

    Jeong H, Dawes A M C, Gauthier D J 2006 Phys. Rev. Lett. 96 143901

    [26]

    Lynch F J, Holland R E, Hamermesh M 1960 Phy. Rev. 120 513

    [27]

    Pleshko P, Palocz I 1969 Phys. Rev. Lett 22 1201

    [28]

    Varoquaux E, Williams G A, Avenel O 1986 Phys. Rev. B 34 7617

    [29]

    Choi S H, sterberg U L 2004 Phys. Rev. Lett. 92 193903

    [30]

    Wei D, Chen J F, Loy M M T, Wong G K L, Du S W 2009 Phys. Rev. Lett. 103 093602

    [31]

    Chen J F, Jeong H, Feng L, Loy M M T, Wong G K L, Du S W 2010 Phys. Rev. Lett. 104 223602

    [32]

    Jeong H, Du S W 2009 Phys. Rev. A 79 011802

    [33]

    Chen J F, Wang S, Wei D, Loy M M T, Wong G K L, Du S W 2010 Phys. Rev. A 81 033844

    [34]

    Du S, Belthangady C, Kolchin P, Ying G Y, Harris S E 2008 Opt. Lett. 33 2149

    [35]

    Peng Y D, Niu Y P, Qi Y H, Yao H F, Gong S Q 2011 Phys. Rev. A 83 013812

    [36]

    Peng Y D, Yang A H, Li D H, Zhao X H, Jiang L, Zhang L Y 2013 J. Mod. Opt. 60 1343

    [37]

    Richard A, John P, Richard M 1989 J. Opt. Soc. Am. A 6 1441

    [38]

    Bao Q Q, Fang B, Yang X, Cui C L, Wu J H 2014 J. Opt. Soc. Am. B 31 62

  • [1] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [2] 杨柳, 郜中星, 薛冰, 张勇刚, 蔡永茂. 基于自发辐射相干效应的可调光子带隙反射率的提高方法. 物理学报, 2018, 67(23): 234204. doi: 10.7498/aps.67.20181374
    [3] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [4] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [5] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [6] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [7] 巴诺, 王磊, 张岩. 一维冷原子晶格中相干诱导三光子带隙. 物理学报, 2014, 63(3): 034209. doi: 10.7498/aps.63.034209
    [8] 张冰, 刘志学, 徐万超. 四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光. 物理学报, 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [9] 邱田会, 杨国建. 微波射频场调制下Λ型三能级原子系统的电磁感应光栅. 物理学报, 2012, 61(1): 014205. doi: 10.7498/aps.61.014205
    [10] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [11] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [12] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性. 物理学报, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [13] 陈爱喜, 陈德海, 王志平. 级联型四能级原子相干介质中的光学双稳态和多稳态. 物理学报, 2009, 58(8): 5450-5454. doi: 10.7498/aps.58.5450
    [14] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [15] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [16] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [17] 周艳微, 叶存云, 林 强, 王育竹. 基于绝热快速通道控制原子布居数及其相干性的研究. 物理学报, 2005, 54(6): 2799-2803. doi: 10.7498/aps.54.2799
    [18] 王 丽, 胡响明. 耦合场线宽:抑制电磁诱导吸收. 物理学报, 2004, 53(8): 2551-2555. doi: 10.7498/aps.53.2551
    [19] 王利强, 李永放, 曹冬梅, 毕冬艳, 张崇俊, 成延春. V型原子系统中相干布居俘获的相干相位调制研究 . 物理学报, 2004, 53(9): 2937-2942. doi: 10.7498/aps.53.2937
    [20] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
计量
  • 文章访问数:  2924
  • PDF下载量:  136
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-08
  • 修回日期:  2016-01-26
  • 刊出日期:  2016-05-05

基于自发辐射相干实现光学前驱动场

    基金项目: 国家自然科学基金(批准号:11247201)和吉林省教育厅十二五科学研究项目(批准号:20150215)资助的课题.

摘要: 研究一个具有两个靠得足够近激发能级的双Lambda模型, 在矩形脉冲中分离出光学前驱动场. 当耦合场是大失谐时, 该原子系统在自发辐射相干效应的影响下产生一个透明窗口并伴随着陡峭的色散曲线. 因此, 由于透明窗口中的慢光效应可以使光学前驱动场从主脉冲场中分离出来. 另外, 我们通过调控脉冲波形序列研究探测场相位和幅值的累积光学前驱动波. 数值结果表明: 由于累积光前驱动场与脉冲主场的相长干涉大大地提高瞬态脉冲的能量.

English Abstract

参考文献 (38)

目录

    /

    返回文章
    返回