搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于自发辐射相干效应的可调光子带隙反射率的提高方法

杨柳 郜中星 薛冰 张勇刚 蔡永茂

引用本文:
Citation:

基于自发辐射相干效应的可调光子带隙反射率的提高方法

杨柳, 郜中星, 薛冰, 张勇刚, 蔡永茂

Improvement on reflectivity of tunable photonic band gap with spontaneous generated coherence

Yang Liu, Gao Zhong-Xing, Xue Bing, Zhang Yong-Gang, Cai Yong-Mao
PDF
导出引用
  • 光子带隙是指某一频率范围的波不能在周期变化的空间介质中传播,即这种结构本身存在“禁带”,并已成功地应用于滤波器、放大器和混频器等器件的设计中.此前,许多专家都致力于提高带隙的反射率,但其只能逐渐接近1.本文在囚禁于一维光晶格中的冷原子介质中实现两个可调光子带隙,并通过选择两基态为精细结构的三能级∧型原子系统,考虑自发辐射相干效应来探究这两个带隙的反射率.适当调节参数,探测场出现增益,从而获得较高反射率的带隙结构,甚至可以超过1.此外,两个带隙反射率还可以通过调节偶极矩之间的夹角以及非相干驱动场强度等参数来操控.
    The photonic band gap is a spectral range which cannot propagate in a periodic optical nanostructure, that is, the structure itself has a “forbidden band”. It has been successfully applied to the filters, amplifiers, mixers, etc. As is well known, dynamically tunable photonic band gaps in cold atomic lattices are of great importance in various research fields. However, the photonic band gaps of a traditional photonic crystal are non-tunable because the periodic structure is determined once the photonic crystal is grown. On the other hand, a majority of previous researches focused on improving the reflectivity of photonic band gap, which can only keep approaching to 1. Due to the action of the vacuum of the radiation field, near-degenerate lower level has an additional coherence term, the spontaneously generated coherence term. In this paper, we consider a three-level ∧-type atomic system driven by a strong coherent field, a weak coherent field and an incoherent pump, in which the two ground states are of hyperfine structure. The one-dimensional photonic band gaps are formed by cold atoms trapped in a one-dimensional-ordered optical lattice and this system may create two photonic band gaps (PBGs). The trapped cold atoms have a Gaussian density distribution in each period as determined by the optical potential depth and the average atomic temperature. We investigate in detail how the reflectivities of the two PBGs are influenced by the coherent effect of spontaneously generated coherence. Then, we find that the reflectivities of the two band gaps can be significantly improved by the spontaneously generated coherence. The reflectivities of such two band gaps can be dynamically manipulated by varying the intensity of incoherent driving field and the relative phase between the probe field and the coupling field, which cannot be realized in a conventional ∧-type atomic system. Besides, by adjusting the parameters appropriately, the reflectivities of these two band gaps can be higher than 1, which is because probe field gain stems from the spontaneously generated coherence. In the future, photonic transport properties can be investigated in the three-dimensional atomic lattices and this work is meaningful for the optical routing, photodiode and transistor.
    • 基金项目: 国家自然科学基金(批准号:11747048,11804066,61773133)、中国博士后科学基金(批准号:2018M630337)和中央高校基本科研业务费专项资金(批准号:HEUCFM180401)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 11747048, 11804066, 61773133), the China Postdoctoral Science Foundation (Grant No. 2018M630337), and the Fundamental Research Funds for the Central Universities, China (Grant No. HEUCFM180401).
    [1]

    Bao Q Q, Yang L, Ba N, Cui C L, Wu J H 2013 J. Opt. Soc. Am. B 30 1532

    [2]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [3]

    Yang L, He B, Wu J H, Zhang Z, Xiao M 2016 Optica 3 1095

    [4]

    Gärttner M, Evers J 2013 Phys. Rev. A 88 033417

    [5]

    Alireza L, Yadipour R, Baghban H 2017 Chin. Phys. B 26 124207

    [6]

    Zhang Y, Wang X, Zhang Y Z 2018 Laser Phys. Lett. 15 075402

    [7]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [8]

    Artoni M, La Rocca G 2006 Phys. Rev. Lett. 96 073905

    [9]

    Wu Z K, Zhang Y Q, Yuan C Z, Wen F, Zheng H B, Zhang Y P 2013 Phys. Rev. A 88 063828

    [10]

    Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B, Zhang Y P 2014 Phys. Rev. A 90 043846

    [11]

    Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q, Xiao M 2011 Phys. Rev. Lett. 106 093904

    [12]

    Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M, Zhang Y P 2015 Laser & Photon. Rev. 9 331

    [13]

    Schilke A, Zimmermann C, Courteille P W, Guerin W 2011 Phys. Rev. Lett. 106 223903

    [14]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [15]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809

    [16]

    Tariq M, Ziauddin, Bano T, Ahmad I, Lee R K 2017 J. Modern Opt. 64 1777

    [17]

    Ba Nuo, Wu X Y, Li D F, Wang D, Fei J Y, Wang L 2017 Chin. Phys. B 26 54207

    [18]

    Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807

    [19]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602

    [20]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901

    [21]

    Gao J W, Bao Q Q, Wan R G, Cui C L, Wu J H 2011 Phys. Rev. A 83 053815

    [22]

    Bendickson J M, Dowling J P, Scalora M 1996 Phys. Rev. E 53 4107

    [23]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859

  • [1]

    Bao Q Q, Yang L, Ba N, Cui C L, Wu J H 2013 J. Opt. Soc. Am. B 30 1532

    [2]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602

    [3]

    Yang L, He B, Wu J H, Zhang Z, Xiao M 2016 Optica 3 1095

    [4]

    Gärttner M, Evers J 2013 Phys. Rev. A 88 033417

    [5]

    Alireza L, Yadipour R, Baghban H 2017 Chin. Phys. B 26 124207

    [6]

    Zhang Y, Wang X, Zhang Y Z 2018 Laser Phys. Lett. 15 075402

    [7]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [8]

    Artoni M, La Rocca G 2006 Phys. Rev. Lett. 96 073905

    [9]

    Wu Z K, Zhang Y Q, Yuan C Z, Wen F, Zheng H B, Zhang Y P 2013 Phys. Rev. A 88 063828

    [10]

    Chen H X, Zhang X, Zhu D Y, Yang C, Jiang T, Zheng H B, Zhang Y P 2014 Phys. Rev. A 90 043846

    [11]

    Zhang Y P, Wang Z G, Nie Z Q, Li C B, Chen H X, Lu K Q, Xiao M 2011 Phys. Rev. Lett. 106 093904

    [12]

    Zhang Y Q, Wu Z K, Belić M R, Zheng H B, Wang Z G, Xiao M, Zhang Y P 2015 Laser & Photon. Rev. 9 331

    [13]

    Schilke A, Zimmermann C, Courteille P W, Guerin W 2011 Phys. Rev. Lett. 106 223903

    [14]

    Petrosyan D 2007 Phys. Rev. A 76 053823

    [15]

    Schilke A, Zimmermann C, Guerin W 2012 Phys. Rev. A 86 023809

    [16]

    Tariq M, Ziauddin, Bano T, Ahmad I, Lee R K 2017 J. Modern Opt. 64 1777

    [17]

    Ba Nuo, Wu X Y, Li D F, Wang D, Fei J Y, Wang L 2017 Chin. Phys. B 26 54207

    [18]

    Wu J H, Gao J Y 2002 Phys. Rev. A 65 063807

    [19]

    Horsley S A R, Wu J H, Artoni M, La Rocca G C 2013 Phys. Rev. Lett. 110 223602

    [20]

    Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, Zhu S Y 2013 Phys. Rev. Lett. 110 093901

    [21]

    Gao J W, Bao Q Q, Wan R G, Cui C L, Wu J H 2011 Phys. Rev. A 83 053815

    [22]

    Bendickson J M, Dowling J P, Scalora M 1996 Phys. Rev. E 53 4107

    [23]

    Yang L, Zhang Y, Yan X B, Sheng Y, Cui C L, Wu J H 2015 Phys. Rev. A 92 053859

  • [1] 智文强, 费宏明, 韩雨辉, 武敏, 张明达, 刘欣, 曹斌照, 杨毅彪. 漏斗型完全光子带隙光波导单向传输. 物理学报, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [2] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [3] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [4] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [5] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [6] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [7] 陆赫林, 杜春光. 回音壁微腔光力系统的相干控制与完全相干透射. 物理学报, 2016, 65(21): 214204. doi: 10.7498/aps.65.214204
    [8] 巴诺, 王磊, 王海华, 李东飞, 王丹, 严立云. 基于自发辐射相干实现光学前驱动场. 物理学报, 2016, 65(10): 104201. doi: 10.7498/aps.65.104201
    [9] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [10] 刘瑞, 於亚飞, 张智明. 利用冷原子系综制备窄线宽三光子频率纠缠态. 物理学报, 2014, 63(14): 144203. doi: 10.7498/aps.63.144203
    [11] 巴诺, 王磊, 张岩. 一维冷原子晶格中相干诱导三光子带隙. 物理学报, 2014, 63(3): 034209. doi: 10.7498/aps.63.034209
    [12] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [13] 张冰, 刘志学, 徐万超. 四能级双V型原子系统中考虑自发辐射相干的无粒子数反转激光. 物理学报, 2013, 62(16): 164207. doi: 10.7498/aps.62.164207
    [14] 陈爱喜, 陈渊, 邓黎, 邝耘丰. 非对称半导体量子阱中自发辐射相干诱导透明. 物理学报, 2012, 61(21): 214204. doi: 10.7498/aps.61.214204
    [15] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [16] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [17] 王伟, 曹祥玉, 王帅, 王瑞, 郑秋容. 支撑介质对平面型电磁带隙结构带隙特性的影响. 物理学报, 2009, 58(7): 4708-4716. doi: 10.7498/aps.58.4708
    [18] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [19] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
    [20] 张海涛, 巩马理, 王东生, 李 伟, 赵达尊. 群论在光子带隙计算中的应用. 物理学报, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
计量
  • 文章访问数:  2712
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-17
  • 修回日期:  2018-08-28
  • 刊出日期:  2018-12-05

基于自发辐射相干效应的可调光子带隙反射率的提高方法

  • 1. 哈尔滨工程大学自动化学院, 哈尔滨 150001;
  • 2. 哈尔滨工程大学理学院, 哈尔滨 150001;
  • 3. 东北电力大学理学院, 吉林 132012
    基金项目: 国家自然科学基金(批准号:11747048,11804066,61773133)、中国博士后科学基金(批准号:2018M630337)和中央高校基本科研业务费专项资金(批准号:HEUCFM180401)资助的课题.

摘要: 光子带隙是指某一频率范围的波不能在周期变化的空间介质中传播,即这种结构本身存在“禁带”,并已成功地应用于滤波器、放大器和混频器等器件的设计中.此前,许多专家都致力于提高带隙的反射率,但其只能逐渐接近1.本文在囚禁于一维光晶格中的冷原子介质中实现两个可调光子带隙,并通过选择两基态为精细结构的三能级∧型原子系统,考虑自发辐射相干效应来探究这两个带隙的反射率.适当调节参数,探测场出现增益,从而获得较高反射率的带隙结构,甚至可以超过1.此外,两个带隙反射率还可以通过调节偶极矩之间的夹角以及非相干驱动场强度等参数来操控.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回