搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计

王越 冷雁冰 王丽 董连和 刘顺瑞 王君 孙艳军

引用本文:
Citation:

基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计

王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军

Tunable grapheme amplitude based broadband electromagnetically-induced-transparency-like metamaterial

Wang Yue, Leng Yan-Bing, Wang Li, Dong Lian-He, Liu Shun-Rui, Wang Jun, Sun Yan-Jun
PDF
导出引用
  • 基于石墨烯的电控特性提出了一种由金属线谐振器和H型谐振器组成的宽带可调的类电磁诱导透明(类EIT)超材料结构.首先,利用CST Microwave Studio软件对该超材料结构的透射特性进行了仿真.该结构在1.051.46 THz内的透射窗由金属线谐振器的等离子谐振和H型谐振器的电感-电容谐振干涉相消引起,且暗模式谐振器的数量增多导致了透射窗带宽的增加.其次,仿真模拟了该结构在不同石墨烯费米能级下的透射特性.当石墨烯费米能级由0 eV逐渐增加到1.5 eV时,该结构透射窗在1.051.46 THz内的平均透射振幅由87%逐渐减少到25%,实现了宽带可调.同时,通过仿真模拟该结构在1.26 THz下的电场分布对其透射机理进行了分析,并实验制备了类EIT超材料结构样品,且利用太赫兹时域光谱对样品进行了透射性能测试,测试结果与仿真分析的趋势基本一致.
    Metamaterials, composed of subwavelength resonators, have extraordinary electromagnetic properties which rely on the sizes and shapes of the resonance structures rather than their compositions. Recently, achieving electromagnetically induced transparency (EIT) in metamaterial system, also called electromagnetically-induced-transparency-like (EIT-like) analogue, has attracted intense attention. Many studies of EIT-like metamaterials have been reported at microwave, terahertz, and optical frequencies numerically and experimentally. However, most of the EIT-like metamaterials can only control the transmission window by changing the structure size of the metamaterial which restricts the practical applications of the EIT-like metamaterial. Therefore, a broadband tunable EIT-like metamaterials based on graphene in terahertz band is presented in this paper, which consists of a cut-wire as the bright resonator and two couples of H-shaped resonators in mirror symmetry as the dark resonators. The transmissivity of the metamaterial structure is simulated by the software CST Microwave Studio. And the simulation results show that the transmission window of this structure is in a frequency range from 1.05 THz to 1.46 THz, which is attributed to the interference between the plasmon resonance of wire resonators and the LC resonance of H-shaped resonators. In addition, increasing the number of dark mode resonators leads to an increase in transmission window bandwidth. Furthermore, a broadband tunable property of transmission amplitude is realized by changing the Fermi level of graphene. When the graphene Fermi level gradually increases from 0 eV to 1.5 eV, the transmission amplitude of the transmission window gradually decreases from 87% to 20%, which realizes the broadband tunability of transmission window. At the same time, the distribution of the electric field at a central frequency of 1.26 THz is simulated to analyse the transmission mechanism. Finally, the EIT metamaterial samples are prepared and the transmission curves of the samples are tested by terahertz time-domain spectroscopy. Such an EIT-like metamaterial not only realizes the broadband EIT property but also realizes the characteristic of the tunable amplitude of the transmission window, which has potential applications in designing the active slow-light devices, terahertz active filtering and terahertz modulator.
      通信作者: 孙艳军, custsun@126.com
    • 基金项目: 国家自然科学基金(批准号:11474037,11474041)资助的课题.
      Corresponding author: Sun Yan-Jun, custsun@126.com
    • Funds: Project supported the National Natural Science Foundation of China (Grant Nos. 11474037, 11474041).
    [1]

    Marangos J P 1998 J. Mod. Opt. 45 471

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Zhang L, Tassin P, Koschny T, Kurter C, Anlage S M, Soukoulis C M 2010 Appl. Phys. Lett. 97 241904

    [4]

    Hu S, Liu D, Lin H, Chen J, Yi Y Y, Yang H 2017 J. Appl. Phys. 121 123103

    [5]

    Zhao Z Y, Song Z Q, Shi W Z, Peng W 2016 Opt. Mater. Express 6 2190

    [6]

    Chen X, Fan W H 2016 Opt. Mater. Express 6 2607

    [7]

    He X J, Yang X Y, Li S P, Shi S, Wu F M, Jiang J X 2016 Opt. Mater. Express 6 3075

    [8]

    Wang J Q, Yuan B H, Fan C Z, He J N, Ding P, Xue Q Z, Liang E J 2013 Opt. Express 21 25159

    [9]

    Huang Z, Dai Y Y, Su G X, Yan Z D, Zhan P, Liu F X, Wang Z L 2018 Plasmonics 13 451

    [10]

    Chen L, Gao C M, Xu J M, Zang X F, Cai B, Zhu Y M 2013 Opt. Lett. 38 1379

    [11]

    Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027

    [12]

    Chen L, Xu N N, Singh L, Cui T J, Singh R, Zhu Y M, Zhang W L 2017 Adv. Opt. Mater. 5 1600960

    [13]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J 2012 Nat. Commun. 3 1151

    [14]

    Fan Y C, Qiao T, Zhang F L, Fu Q H, Dong J J, Kong B T, Li H Q 2017 Sci. Rep. 7 40441

    [15]

    Xiao S, Wang T, Liu T T, Yan X C, Li Z, Xu C 2018 Carbon 126 271

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [17]

    He X Y 2015 Carbon 82 229

    [18]

    Huang X J, Hu Z R, Liu P G 2014 AIP Adv. 4 117103

    [19]

    Fallahi A, Perruisseau-Carrier J 2012 Phy. Rev. B 86 195408

    [20]

    Ren L, Zhang Q, Yao J, Sun Z Z, Kaneko R, Yan Z, Nanot S L, Jin Z, Kawayama I, Tonouchi M, Tour J M, Kono J 2012 Nano Lett. 12 3711

  • [1]

    Marangos J P 1998 J. Mod. Opt. 45 471

    [2]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [3]

    Zhang L, Tassin P, Koschny T, Kurter C, Anlage S M, Soukoulis C M 2010 Appl. Phys. Lett. 97 241904

    [4]

    Hu S, Liu D, Lin H, Chen J, Yi Y Y, Yang H 2017 J. Appl. Phys. 121 123103

    [5]

    Zhao Z Y, Song Z Q, Shi W Z, Peng W 2016 Opt. Mater. Express 6 2190

    [6]

    Chen X, Fan W H 2016 Opt. Mater. Express 6 2607

    [7]

    He X J, Yang X Y, Li S P, Shi S, Wu F M, Jiang J X 2016 Opt. Mater. Express 6 3075

    [8]

    Wang J Q, Yuan B H, Fan C Z, He J N, Ding P, Xue Q Z, Liang E J 2013 Opt. Express 21 25159

    [9]

    Huang Z, Dai Y Y, Su G X, Yan Z D, Zhan P, Liu F X, Wang Z L 2018 Plasmonics 13 451

    [10]

    Chen L, Gao C M, Xu J M, Zang X F, Cai B, Zhu Y M 2013 Opt. Lett. 38 1379

    [11]

    Chen L, Wei Y M, Zang X F, Zhu Y M, Zhuang S L 2016 Sci. Rep. 6 22027

    [12]

    Chen L, Xu N N, Singh L, Cui T J, Singh R, Zhu Y M, Zhang W L 2017 Adv. Opt. Mater. 5 1600960

    [13]

    Gu J Q, Singh R, Liu X J, Zhang X Q, Ma Y F, Zhang S, Maier S A, Tian Z, Azad A K, Chen H T, Taylor A J 2012 Nat. Commun. 3 1151

    [14]

    Fan Y C, Qiao T, Zhang F L, Fu Q H, Dong J J, Kong B T, Li H Q 2017 Sci. Rep. 7 40441

    [15]

    Xiao S, Wang T, Liu T T, Yan X C, Li Z, Xu C 2018 Carbon 126 271

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401

    [17]

    He X Y 2015 Carbon 82 229

    [18]

    Huang X J, Hu Z R, Liu P G 2014 AIP Adv. 4 117103

    [19]

    Fallahi A, Perruisseau-Carrier J 2012 Phy. Rev. B 86 195408

    [20]

    Ren L, Zhang Q, Yao J, Sun Z Z, Kaneko R, Yan Z, Nanot S L, Jin Z, Kawayama I, Tonouchi M, Tour J M, Kono J 2012 Nano Lett. 12 3711

  • [1] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 张跃斌, 马成举, 张垚, 金嘉升, 鲍士仟, 李咪, 李东明. 基于非对称结构全介质超材料的类电磁诱导透明效应研究. 物理学报, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [4] 江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器. 物理学报, 2021, 70(2): 027804. doi: 10.7498/aps.70.20201173
    [5] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器. 物理学报, 2019, 68(24): 247802. doi: 10.7498/aps.68.20191216
    [6] 王磊, 肖芮文, 葛士军, 沈志雄, 吕鹏, 胡伟, 陆延青. 太赫兹液晶材料与器件研究进展. 物理学报, 2019, 68(8): 084205. doi: 10.7498/aps.68.20182275
    [7] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [8] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [9] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [10] 杨光, 王杰, 王军民. 采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数. 物理学报, 2017, 66(10): 103201. doi: 10.7498/aps.66.103201
    [11] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [12] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [13] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [14] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [15] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [16] 丁敏, 薛晖, 吴博, 孙兵兵, 刘政, 黄志祥, 吴先良. 基于电磁超材料的两种等效参数提取算法的比较分析. 物理学报, 2013, 62(4): 044218. doi: 10.7498/aps.62.044218
    [17] 刘冉, 史金辉, E. Plum, V.A. Fedotov, N.I. Zheludev. 基于平面超材料的Fano谐振可调谐研究. 物理学报, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [18] 钟顺林, 韩满贵, 邓龙江. 超材料微波磁导率色散行为的电可调控性研究. 物理学报, 2011, 60(11): 117501. doi: 10.7498/aps.60.117501
    [19] 付非亚, 陈微, 周文君, 刘安金, 邢名欣, 王宇飞, 郑婉华. 纳米三明治结构光子超材料中电磁场振荡行为研究. 物理学报, 2010, 59(12): 8579-8583. doi: 10.7498/aps.59.8579
    [20] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
计量
  • 文章访问数:  7706
  • PDF下载量:  360
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-16
  • 修回日期:  2018-02-18
  • 刊出日期:  2018-05-05

/

返回文章
返回