搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数

杨光 王杰 王军民

引用本文:
Citation:

采用高信噪比电磁诱导透明谱测定85Rb原子5D5/2态的超精细相互作用常数

杨光, 王杰, 王军民

Determination of the hyperfine coupling constants of the 5D5/2 state of 85Rb atoms by using high signal-to-noise ratio electromagnetically-induced transparency spectra

Yang Guang, Wang Jie, Wang Jun-Min
PDF
导出引用
  • 基于85Rb原子5S1/2-5P3/2-5D5/2阶梯型能级系统 (m 780 nm + 776 nm),利用高信噪比的电磁诱导透明谱对85Rb原子5D5/2态超精细分裂进行测量.其中,频率校准是通过位相型电光调制器和共焦法布里-珀罗腔共同实现的.通过测量85Rb原子5D5/2态(F=5),(F=4)及(F=3)之间的超精细分裂,我们确定了85Rb原子5D5/2态的磁偶极超精细相互作用常数(A=-(2.222 0.019) MHz)和电四极超精细相互作用常数(B=(2.664 0.130) MHz).
    We report the hyperfine splitting measurement of the 85Rb 5D5/2 state by electromagnetically induced transparency spectroscopy with high signal-to-noise ratio in the 85Rb 5S1/2-5P3/2-5D5/2 ladder-type system (m 780 nm + 776 nm). The frequency calibration is performed by employing a phase-type electro-optic modulator with a confocal Fabry-Perot cavity. From the measured hyperfine splittings among the manifolds of (F=5), (F=4) and (F=3) of the 85Rb 5D5/2 state, we determine the magnetic dipole hyperfine coupling constant (A= (-2.222 0.019) MHz) and the quadrupole coupling constant (B= (2.664 0.130) MHz) of 5D5/2 state of 85Rb atoms.
      通信作者: 王军民, wwjjmm@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61475091,11274213,61227902)资助的课题.
      Corresponding author: Wang Jun-Min, wwjjmm@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475091, 11274213, 61227902).
    [1]

    Wood C S, Bennett S C, Cho D, Masterson B P, Roberts J L, Tanner C E, Wieman C E 1997 Science 275 1759

    [2]

    Dzuba V A, Flambaum V V, Ginges J S M 2001 Phys. Rev. A 63 062101

    [3]

    Nez F, Biraben F 1993 Opt. Commun. 102 432

    [4]

    Nez F, Biraben F, Felder R, Millerioux Y 1994 Opt. Commun. 110 731

    [5]

    Grove T T, Sanchez-Villicana V, Duncan B C, Maleki S, Gould P L 1995 Phys. Scr. 52 271

    [6]

    Stalnaker J E, Mbele V, Gerginov V, Fortier T M, Diddams S A, Hollberg L, Tanner C E 2010 Phys. Rev. A 81 043840

    [7]

    Gabbanini C, Ceccherini F, Gozzini S, Lucchesini A 1999 Meas. Sci. Technol. 10 772

    [8]

    Yang G, Wang J, Yang B D, Wang J M 2016 Laser Phys. Lett. 13 085702

    [9]

    Wang J, Liu H F, Yang B D, He J, Wang J M 2014 Meas. Sci. Technol. 25 035501

    [10]

    Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505

    [11]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107

    [12]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [13]

    Hakuta K, Suzuki M, Katsuragawa M, Li J Z 1997 Phys. Rev. Lett. 79 209

    [14]

    Zibrov A S, Lukin M D, Scully M O 1999 Phys. Rev. Lett. 83 4049

    [15]

    Li X L, Liu H N, Yang Y 2011 Acta Opt. Sin. 31 0102001 (in Chinese) [李晓莉, 刘红娜, 杨悦 2011 光学学报 31 0102001]

    [16]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [17]

    Field J E, Hahn K H, Harris S E 1991 Phys. Rev. Lett. 67 3062

    [18]

    Padmabandu G G, Welch G R, Shubin I N, Fry E S, Nikonov D E, Lukin M D, Scully M O 1996 Phys. Rev. Lett. 76 2053

    [19]

    Ham B S, Shahriar S M, Hemmer P R 1999 J. Opt. Soc. Am. B 16 801

    [20]

    Hopkins S A, Usadi E, Chen H X, Durrant A V 1997 Opt. Commun. 138 185

    [21]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [22]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nature Photon. 3 706

    [23]

    Bajcsy M, Zibrov A S, Lukin M D 2003 Nature 426 638

    [24]

    Lee M J, Ruseckas J, Lee C Y, Kudriasov V, Chang K F, Cho H W, Juzeliunas G, Yu I A 2014 Nature Commun. 5 5542

    [25]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [26]

    Ottaviani C, Vitali D, Artoni M, Cataliotti F, Tombesi P 2003 Phys. Rev. Lett. 90 197902

    [27]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [28]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821

    [29]

    Banacloche J G, Li Y Q, Jin S Z, Xiao M 1995 Phys. Rev. A 51 576

    [30]

    Boon J R, Zekou E, McGloin D, Dunn M H 1999 Phys. Rev. A 59 4675

    [31]

    Moon H S, Lee L, Kim J B 2005 J. Opt. Soc. Am. B 22 2529

    [32]

    Foot C J 2005 Atomic Physics (New York: Oxford University Press)

    [33]

    Johnson W R 2007 Atomic Structure Theory: Lectures on Atomic Physics (New York: Springer)

    [34]

    Han Y S, Guo S L, Wang J, Liu H F, He J, Wang J M 2014 Chin. Opt. Lett. 12 121401

    [35]

    McCarron D J, King S A, Cornish S L 2008 Meas. Sci. Technol. 19 105601

    [36]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818

    [37]

    McGloin D, Dunn M H, Fulton D J 2000 Phys. Rev. A 62 053802

    [38]

    Ye C Y, Zibrov A S 2002 Phys. Rev. A 65 023806

  • [1]

    Wood C S, Bennett S C, Cho D, Masterson B P, Roberts J L, Tanner C E, Wieman C E 1997 Science 275 1759

    [2]

    Dzuba V A, Flambaum V V, Ginges J S M 2001 Phys. Rev. A 63 062101

    [3]

    Nez F, Biraben F 1993 Opt. Commun. 102 432

    [4]

    Nez F, Biraben F, Felder R, Millerioux Y 1994 Opt. Commun. 110 731

    [5]

    Grove T T, Sanchez-Villicana V, Duncan B C, Maleki S, Gould P L 1995 Phys. Scr. 52 271

    [6]

    Stalnaker J E, Mbele V, Gerginov V, Fortier T M, Diddams S A, Hollberg L, Tanner C E 2010 Phys. Rev. A 81 043840

    [7]

    Gabbanini C, Ceccherini F, Gozzini S, Lucchesini A 1999 Meas. Sci. Technol. 10 772

    [8]

    Yang G, Wang J, Yang B D, Wang J M 2016 Laser Phys. Lett. 13 085702

    [9]

    Wang J, Liu H F, Yang B D, He J, Wang J M 2014 Meas. Sci. Technol. 25 035501

    [10]

    Wang J, Liu H F, Yang G, Yang B D, Wang J M 2014 Phys. Rev. A 90 052505

    [11]

    Harris S E, Field J E, Imamoğlu A 1990 Phys. Rev. Lett. 64 1107

    [12]

    Ham B S, Shahriar M S, Hemmer P R 1997 Opt. Lett. 22 1138

    [13]

    Hakuta K, Suzuki M, Katsuragawa M, Li J Z 1997 Phys. Rev. Lett. 79 209

    [14]

    Zibrov A S, Lukin M D, Scully M O 1999 Phys. Rev. Lett. 83 4049

    [15]

    Li X L, Liu H N, Yang Y 2011 Acta Opt. Sin. 31 0102001 (in Chinese) [李晓莉, 刘红娜, 杨悦 2011 光学学报 31 0102001]

    [16]

    Boller K J, Imamoğlu A, Harris S E 1991 Phys. Rev. Lett. 66 2593

    [17]

    Field J E, Hahn K H, Harris S E 1991 Phys. Rev. Lett. 67 3062

    [18]

    Padmabandu G G, Welch G R, Shubin I N, Fry E S, Nikonov D E, Lukin M D, Scully M O 1996 Phys. Rev. Lett. 76 2053

    [19]

    Ham B S, Shahriar S M, Hemmer P R 1999 J. Opt. Soc. Am. B 16 801

    [20]

    Hopkins S A, Usadi E, Chen H X, Durrant A V 1997 Opt. Commun. 138 185

    [21]

    Hau L V, Harris S E, Dutton Z, Behroozi C H 1999 Nature 397 594

    [22]

    Lvovsky A I, Sanders B C, Tittel W 2009 Nature Photon. 3 706

    [23]

    Bajcsy M, Zibrov A S, Lukin M D 2003 Nature 426 638

    [24]

    Lee M J, Ruseckas J, Lee C Y, Kudriasov V, Chang K F, Cho H W, Juzeliunas G, Yu I A 2014 Nature Commun. 5 5542

    [25]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731

    [26]

    Ottaviani C, Vitali D, Artoni M, Cataliotti F, Tombesi P 2003 Phys. Rev. Lett. 90 197902

    [27]

    Kominis I K, Kornack T W, Allred J C, Romalis M V 2003 Nature 422 596

    [28]

    Zhao J M, Zhu X B, Zhang L J, Feng Z G, Li C Y, Jia S T 2009 Opt. Express 17 15821

    [29]

    Banacloche J G, Li Y Q, Jin S Z, Xiao M 1995 Phys. Rev. A 51 576

    [30]

    Boon J R, Zekou E, McGloin D, Dunn M H 1999 Phys. Rev. A 59 4675

    [31]

    Moon H S, Lee L, Kim J B 2005 J. Opt. Soc. Am. B 22 2529

    [32]

    Foot C J 2005 Atomic Physics (New York: Oxford University Press)

    [33]

    Johnson W R 2007 Atomic Structure Theory: Lectures on Atomic Physics (New York: Springer)

    [34]

    Han Y S, Guo S L, Wang J, Liu H F, He J, Wang J M 2014 Chin. Opt. Lett. 12 121401

    [35]

    McCarron D J, King S A, Cornish S L 2008 Meas. Sci. Technol. 19 105601

    [36]

    Yang B D, Gao J, Zhang T C, Wang J M 2011 Phys. Rev. A 83 013818

    [37]

    McGloin D, Dunn M H, Fulton D J 2000 Phys. Rev. A 62 053802

    [38]

    Ye C Y, Zibrov A S 2002 Phys. Rev. A 65 023806

  • [1] 郭状, 欧阳峰, 卢志舟, 王梦宇, 谭庆贵, 谢成峰, 魏斌, 何兴道. 氟化镁微瓶腔光频梳光谱分析及优化. 物理学报, 2024, 73(3): 034202. doi: 10.7498/aps.73.20231126
    [2] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] 蒋驰, 耿滔. 角向偏振涡旋光的紧聚焦特性研究以及超长超分辨光针的实现. 物理学报, 2023, 72(12): 124201. doi: 10.7498/aps.72.20230304
    [4] 盛泉, 耿婧旎, 王爱华, 王盟, 齐岳, 刘俊杰, 付士杰, 史伟, 姚建铨. 基于猫眼逆反射器的大范围免调试激光器. 物理学报, 2023, 72(4): 044203. doi: 10.7498/aps.72.20221956
    [5] 李盈傧, 秦玲玲, 陈红梅, 李怡涵, 何锦锦, 史璐珂, 翟春洋, 汤清彬, 刘爱华, 余本海. 强激光场下原子超快动力学过程中的能量交换. 物理学报, 2022, 71(4): 043201. doi: 10.7498/aps.71.20211703
    [6] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [7] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [8] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [9] 于长秋, 马世昌, 陈志远, 项晨晨, 李海, 周铁军. 结构改进的厘米尺寸谐振腔的磁场传感特性. 物理学报, 2021, 70(16): 160701. doi: 10.7498/aps.70.20210247
    [10] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [11] 刘尚阔, 王涛, 李坤, 曹昆, 张玺斌, 周艳, 赵建科, 姚保利. 光源光谱特性对空间相机调制传递函数检测的影响. 物理学报, 2021, 70(13): 134208. doi: 10.7498/aps.70.20201575
    [12] 曹春蕾, 徐进良, 叶文力. 周期性爆沸诱导的液滴自驱动. 物理学报, 2021, 70(24): 244703. doi: 10.7498/aps.70.20211386
    [13] 王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉. 宽频带压缩态光场光学参量腔的设计. 物理学报, 2020, 69(23): 234204. doi: 10.7498/aps.69.20200890
    [14] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [15] 翟泽辉, 郝温静, 刘建丽, 段西亚. 用于光学薛定谔猫态制备的滤波设计与滤波腔腔长测量. 物理学报, 2020, 69(18): 184204. doi: 10.7498/aps.69.20200589
    [16] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [17] 张继业, 张建伟, 曾玉刚, 张俊, 宁永强, 张星, 秦莉, 刘云, 王立军. 高功率垂直外腔面发射半导体激光器增益设计及制备. 物理学报, 2020, 69(5): 054204. doi: 10.7498/aps.69.20191787
    [18] 原青云, 孙永卫, 张希军. 基于电荷守恒定律的航天器内带电三维仿真简化模型. 物理学报, 2019, 68(19): 195201. doi: 10.7498/aps.68.20190631
    [19] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
计量
  • 文章访问数:  4971
  • PDF下载量:  227
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-16
  • 修回日期:  2017-03-03
  • 刊出日期:  2017-05-05

/

返回文章
返回