搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于石墨烯编码超构材料的太赫兹波束多功能动态调控

闫昕 梁兰菊 张璋 杨茂生 韦德泉 王猛 李院平 吕依颖 张兴坊 丁欣 姚建铨

闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
引用本文: 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Phys. Sin., 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
Citation: Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan. Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial. Acta Phys. Sin., 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125

基于石墨烯编码超构材料的太赫兹波束多功能动态调控

闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨

Dynamic multifunctional control of terahertz beam based on graphene coding metamaterial

Yan Xin, Liang Lan-Ju, Zhang Zhang, Yang Mao-Sheng, Wei De-Quan, Wang Meng, Li Yuan-Ping, Lü Yi-Ying, Zhang Xing-Fang, Ding Xin, Yao Jian-Quan
PDF
导出引用
  • 提出了一种基于石墨烯带的太赫兹波段的1 bit编码超构材料,可以实现太赫兹波束的数目、频率、幅度等参数多功能动态调控.该结构由金属薄膜、聚酰亚胺、硅、二氧化硅、石墨烯带组成.通过对石墨烯带施加两种不同的电压,可以实现一定频率范围内相位差接近180°的“0”和“1”数字编码单元,进而构成1 bit动态可控的编码超构材料.全波仿真结果表明,不同序列的编码超构材料能够实现波束数目从单波束、双波束、多波束到宽波束的调控.相同序列的编码超构材料,通过施加石墨烯带的不同电压能够实现宽频段波束频率的偏移.对于000000或者111111周期序列的编码超构材料,通过施加石墨烯带的不同电压还能够实现波束幅度的调控.因此这种基于石墨烯带的编码超构材料为灵活调控太赫兹波提供了一种新的途径,将在雷达隐身、成像、宽带通信等方面具有重要的意义.
    Terahertz (THz) waves have aroused tremendous research interest due to its some unique features and widespread applications in broadband communication, military radar, non-destructive detection, biomedical, security check, etc. With the development of THz applications, dynamic control beam of THz wave with wide bandwidth and multifunction has become a key issue in the field THz technology. The metamaterial with a kind of artificial material provides an approach to controlling the terahertz beam. However, the characteristics of metamaterials based on the equivalent medium parameters are limited by the structural configuration, which usually causes disadvantageous problems including the real-time dynamic control, narrow bandwidth, modulating efficiency, complicated design, etc. The coding metamaterial based digital elements provide an approach to wideband and flexible control terahertz wave by different sequences. However, the THz waves are still hard to tune in dynamic ways due to the limitation of material properties and processing capability. Graphene with a new two-dimensional material has excellent photoelectric properties such as tunable band gap, flexibly dynamic performance, and low material loss. Therefore, the graphene with coding metamaterial can offer a new way of dynamically controlling beam. In this paper, we design a 1 bit coding metamaterial based on graphene ribbon, which can be expected to realize multi-modulation to the number of beams, frequency and amplitude of THz wavers. The mechanism of controlling electromagnetic wave by coding metamaterial can be explained by the reflective array antenna. And the characteristics of the proposed metamaterial based on the graphene ribbon and the far-field scattering of coding metamaterial are simulated using the CST Microwave Studio. A composite structure which consists of gold metal, polyimide, silicon, silicon dioxide, graphene ribbon is designed and characterized in the THz range. The simulation results show that by gating different graphene ribbons, the coding state (digital element) on each column can be independently controlled as well, thus the ‘0’ and ‘1’ digital elements with a phase difference of 180° in a certain frequency range can be realized, and then the coding sequence on metamaterials is dynamically modulated. Full-wave simulation results also show that different-sequence coding metamaterials can achieve the control of the number of scattering THz beams, from one, double, multi scattering in a wide frequency range (from 1.7 to 2.2 THz). For coding sequence ‘010101...’ realized by gating different voltages on coding elements ‘0’ and ‘1’, the frequency at which double scattering beams are produced, presents shift. For the coding metamaterial of periodic sequence of 000000 or 111111 with different voltage for different graphene ribbon, which can be expected to realize amplitude modulation from -12 dB to -23 dB of THz beam steering at f1=1 THz. Therefore, this graphene coding metamaterial can control the THz beam flexibly and may offer widespread applications in stealth, imaging, and broadband communication of THz frequencies.
      通信作者: 梁兰菊, lianglanju123@163.com
    • 基金项目: 国家自然科学基金(批准号:61701434,61735010)、山东省自然基金(批准号:ZR2017MF005)、山东省高等学校科技计划(批准号:J17KA087)、中国博士后科学基金(批准号:2015M571263)、枣庄市自主创新及成果转化专项(批准号:2016GH19,2016GH31)、枣庄市光电信息功能材料与微纳器件重点实验室和枣庄市太赫兹工程技术研究中心资助的课题.
      Corresponding author: Liang Lan-Ju, lianglanju123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701434, 61735010), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2017MF005), the Project of Shandong Province Higher Education Science and Technology Program, China (Grant No. J17KA087), the China Postdoctoral Science Foundation (Grant No. 2015M571263), the Program of Independent and Achievement Transformation Plan for Zaozhuang, China (Grant Nos. 2016GH19, 2016GH31), the Key Laboratory of Optoelectronic Information Functional Materials and Micro-nano Devices in Zaozhuang, China, and the Zaozhuang Engineering Research Center of Terahertz, China.
    [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug Invent. Today 5 157

    [3]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photon. 10 371

    [4]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [5]

    Benz A, Rall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 4269

    [6]

    Chen S, Hu W D 2017 Radio Commun. Technol. 43 01(in Chinese) [陈实, 胡伟东 2017 无线电通信技术 43 01]

    [7]

    Shen H P, Koschny T T, Soukoulis C M 2014 Phys. Rev. B 90 115437

    [8]

    Dabidian N, Gupta S D, Kholmanov I, Lai K, Lu F, Lee J W, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Belkin M A, Gennady S 2016 Nano Lett. 16 3607

    [9]

    Zheludev N I 2010 Science 328 582

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201(in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 AIP Advan. 6 045024

    [14]

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101(in Chinese) [张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101]

    [15]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [16]

    Shen N H, Koschny T, Soukoulis C M, Tassin P 2014 Phys. Rev. B 90 115437

    [17]

    Dabidian N, Dutta-Gupta S, Kholmanov I, Lai K, Lu F, Jongwon L, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Shvets G 2016 Nano Lett. 16 3607

    [18]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Debdeep J, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [19]

    Gao H, Yan F P, Tian S Y, Bai Y 2017 Chinese J. Lasers 44 0703024(in Chinese) [高红, 延凤平, 谭思宇, 白燕 2017 中国激光 44 0703024]

    [20]

    Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027

    [21]

    Carrasco E, Tamagnone M, Perruisseau-Carrier J 2013 Appl. Phys. Lett. 102 104103

    [22]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2016 Opt. Express 23 27230

    [23]

    Orazbayev B, Beruete M, Khromova I 2016 Opt. Express 24 8848

    [24]

    Su Z X, Chen X, Yin J B, Zhao X P 2016 Opt. Lett. 16 3799

    [25]

    Della G C, Engheta N 2014 Nat. Mater. 13 1115

    [26]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

    [27]

    Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Shahid I, Wan X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L 2016 Adv. Opt. Mater. 4 1965

    [28]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156

    [29]

    Cui T J 2017 J. Opt. 19 084004

    [30]

    Zhang L 2017 J. Mater. Chem. C 5 3644

    [31]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624

    [32]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [33]

    Yan X, Liang L J, Liu W W, Ding X, Yang J, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [34]

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101(in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gómez-Díaz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

    期刊类型引用(4)

    1. 姚海云,闫昕,梁兰菊,杨茂生,杨其利,吕凯凯,姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报. 2022(06): 423-431 . 百度学术
    2. 张岩,李春,卞博锐,张文,蒋玲. 新型太赫兹波束分离器的设计. 红外与激光工程. 2020(05): 226-232 . 百度学术
    3. 陈淑瑜,韦德泉. 电磁超表面高灵敏度太赫兹传感器的设计. 激光杂志. 2019(04): 18-22 . 百度学术
    4. 耿黎东,王敏生,蒋海军,光新军. 石墨烯在石油工程中的应用现状与发展建议. 石油钻探技术. 2019(05): 80-85 . 百度学术

    其他类型引用(5)

  • [1]

    Tonouchi M 2007 Nat. Photon. 1 97

    [2]

    Pawar A Y, Sonawane D D, Erande K B, Derle D V 2013 Drug Invent. Today 5 157

    [3]

    Nagatsuma T, Ducournau G, Renaud C C 2016 Nat. Photon. 10 371

    [4]

    Alves F, Grbovic D, Kearney B, Karunasiri G 2012 Opt. Lett. 37 1886

    [5]

    Benz A, Rall M, Schwarz S, Dietze D, Detz H, Andrews A M, Schrenk W 2014 Sci. Rep. 4 4269

    [6]

    Chen S, Hu W D 2017 Radio Commun. Technol. 43 01(in Chinese) [陈实, 胡伟东 2017 无线电通信技术 43 01]

    [7]

    Shen H P, Koschny T T, Soukoulis C M 2014 Phys. Rev. B 90 115437

    [8]

    Dabidian N, Gupta S D, Kholmanov I, Lai K, Lu F, Lee J W, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Belkin M A, Gennady S 2016 Nano Lett. 16 3607

    [9]

    Zheludev N I 2010 Science 328 582

    [10]

    Sun S, He Q, Xiao S, Xu Q, Li X, Zhou L 2012 Nat. Mater. 11 426

    [11]

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201(in Chinese) [韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201]

    [12]

    Wang G D, Liu M H, Hu X W, Kong L H, Cheng L L, Chen Z Q 2014 Chin. Phys. B 23 017802

    [13]

    Jia S L, Wan X, Su P, Zhao Y J, Cui T J 2016 AIP Advan. 6 045024

    [14]

    Zhang Y, Feng Y J, Jiang T, Cao J, Zhao J M, Zhu B 2017 Acta Phys. Sin. 66 204101(in Chinese) [张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博 2017 物理学报 66 204101]

    [15]

    Lee S H, Choi M, Kim T T, Lee S, Liu M, Yin X B, Choi H K, Lee S S, Choi C G, Choi S Y, Zhang X, Min B 2012 Nat. Mater. 11 936

    [16]

    Shen N H, Koschny T, Soukoulis C M, Tassin P 2014 Phys. Rev. B 90 115437

    [17]

    Dabidian N, Dutta-Gupta S, Kholmanov I, Lai K, Lu F, Jongwon L, Jin M Z, Trendafilov S, Khanikaev A, Fallahazad B, Tutuc E, Shvets G 2016 Nano Lett. 16 3607

    [18]

    Sensale-Rodriguez B, Yan R, Kelly M M, Fang T, Tahy K, Hwang W S, Debdeep J, Liu L, Xing H G 2012 Nat. Commun. 3 780

    [19]

    Gao H, Yan F P, Tian S Y, Bai Y 2017 Chinese J. Lasers 44 0703024(in Chinese) [高红, 延凤平, 谭思宇, 白燕 2017 中国激光 44 0703024]

    [20]

    Sherrott M C, Hon P W C, Fountaine K T, Garcia J C, Ponti S M, Brar V W, Sweatlock L A, Atwater H A 2017 Nano Lett. 17 3027

    [21]

    Carrasco E, Tamagnone M, Perruisseau-Carrier J 2013 Appl. Phys. Lett. 102 104103

    [22]

    Zhang Y, Feng Y J, Zhu B, Zhao J M, Jiang T 2016 Opt. Express 23 27230

    [23]

    Orazbayev B, Beruete M, Khromova I 2016 Opt. Express 24 8848

    [24]

    Su Z X, Chen X, Yin J B, Zhao X P 2016 Opt. Lett. 16 3799

    [25]

    Della G C, Engheta N 2014 Nat. Mater. 13 1115

    [26]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light: Sci. Appl. 3 e218

    [27]

    Liu S, Zhang L, Yang Q L, Xu Q, Yang Y, Noor A, Zhang Q, Shahid I, Wan X, Tian Z, Tang W X, Cheng Q, Han J G, Zhang W L 2016 Adv. Opt. Mater. 4 1965

    [28]

    Liu S, Cui T J, Zhang L, Xu Q, Wang Q, Wan X, Gu J Q, Tang W X, Qi M Q, Han J G, Zhang W L, Zhou X Y, Cheng Q 2016 Adv. Sci. 3 1600156

    [29]

    Cui T J 2017 J. Opt. 19 084004

    [30]

    Zhang L 2017 J. Mater. Chem. C 5 3644

    [31]

    Liu S, Cui T J 2017 Adv. Opt. Mater. 5 1700624

    [32]

    Liang L J, Qi M Q, Yang J, Shen X P, Zhai J Q, Xu W Z, Jin B B, Liu W W, Feng Y J, Zhang C H, Lu H, Chen H T, Kang L, Xu W W, Chen J, Cui T J, Wu P H, Liu S G 2015 Adv. Opt. Mater. 3 1374

    [33]

    Yan X, Liang L J, Liu W W, Ding X, Yang J, Xu D G, Zhang Y T, Cui T J, Yao J Q 2015 Opt. Express 23 29128

    [34]

    Yan X, Liang L J, Zhang Y T, Ding X, Yao J Q 2015 Acta Phys. Sin. 64 158101(in Chinese) [闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨 2015 物理学报 64 158101]

    [35]

    Hanson G W 2008 J. Appl. Phys. 103 064302

    [36]

    Gómez-Díaz J S, Perruisseau-Carrier J 2013 Opt. Express 21 15490

  • [1] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [2] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报, 2022, 71(6): 068101. doi: 10.7498/aps.71.20211845
    [3] 陈闻博, 陈鹤鸣. 基于超材料复合结构的太赫兹液晶移相器. 物理学报, 2022, 71(17): 178701. doi: 10.7498/aps.71.20212400
    [4] 李泽宇, 姜去寒, 马腾洲, 袁英豪, 陈麟. 基于太赫兹石墨烯等离激元的多参数相位可调谐结构及其应用. 物理学报, 2021, 70(22): 224202. doi: 10.7498/aps.70.20210445
    [5] 王健, 张超越, 姚昭宇, 张弛, 许锋, 阳媛. 基于石墨烯的太赫兹漫反射表面快速设计方法. 物理学报, 2021, 70(3): 034102. doi: 10.7498/aps.70.20201034
    [6] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [7] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [8] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [9] 李小兵, 陆卫兵, 刘震国, 陈昊. 基于可调石墨烯超表面的宽角度动态波束控制. 物理学报, 2018, 67(18): 184101. doi: 10.7498/aps.67.20180592
    [10] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射. 物理学报, 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [11] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [12] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体. 物理学报, 2016, 65(1): 018101. doi: 10.7498/aps.65.018101
    [13] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [14] 邓新华, 刘江涛, 袁吉仁, 王同标. 全新的电导率特征矩阵方法及其在石墨烯THz频率光学特性上的应用. 物理学报, 2015, 64(5): 057801. doi: 10.7498/aps.64.057801
    [15] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [16] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [17] 邓新华, 袁吉仁, 刘江涛, 王同标. 基于石墨烯的可调谐太赫兹光子晶体结构. 物理学报, 2015, 64(7): 074101. doi: 10.7498/aps.64.074101
    [18] 冯伟, 张戎, 曹俊诚. 基于石墨烯的太赫兹器件研究进展. 物理学报, 2015, 64(22): 229501. doi: 10.7498/aps.64.229501
    [19] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [20] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
  • 期刊类型引用(4)

    1. 姚海云,闫昕,梁兰菊,杨茂生,杨其利,吕凯凯,姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制. 物理学报. 2022(06): 423-431 . 百度学术
    2. 张岩,李春,卞博锐,张文,蒋玲. 新型太赫兹波束分离器的设计. 红外与激光工程. 2020(05): 226-232 . 百度学术
    3. 陈淑瑜,韦德泉. 电磁超表面高灵敏度太赫兹传感器的设计. 激光杂志. 2019(04): 18-22 . 百度学术
    4. 耿黎东,王敏生,蒋海军,光新军. 石墨烯在石油工程中的应用现状与发展建议. 石油钻探技术. 2019(05): 80-85 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  11111
  • PDF下载量:  375
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-01-17
  • 修回日期:  2018-03-28
  • 刊出日期:  2018-06-05

/

返回文章
返回