搜索

x
中国物理学会期刊

基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器

CSTR: 32037.14.aps.67.20180129

Field effect transistor photodetector based on graphene and perovskite quantum dots

CSTR: 32037.14.aps.67.20180129
PDF
导出引用
  • 以等离子增强化学气相沉积法制备的石墨烯作为导电沟道材料,将其与无机CsPbI3钙钛矿量子点结合,设计并制备了石墨烯-钙钛矿量子点场效应晶体管光电探测器.研究和分析了石墨烯作为场效应晶体管的电学特性及其与钙钛矿量子点结合作为光电探测器的光电特性.结果表明,石墨烯在场效应晶体管中表现出良好的电学性质,其与钙钛矿量子点的结合对波长为400 nm的光辐射具有明显的光响应,在光强为12 W时器件光生电流最大为64 A,响应率达6.4 AW-1,对应的光电导增益和探测率分别为3.7104,6107 Jones(1 Jones=1 cmHz1/2W-1).

     

    Graphene is an attractive optoelectronic material for various optoelectronic devices, especially in the field of photoelectric detection due to its high carrier mobility and fast response time. However, the relatively low light absorption cross-section and fast electron-hole recombination rate can lead to rapid exciton annihilation and small light gain, which restrict the commercial applications of pure graphene-based photodetector. The perovskite has attracted much attention because of its high photoelectric conversion efficiency in the field of solar cells. The perovskite has the advantages of long carrier diffusion distance and high optical absorption coefficient, which can effectively make up for the shortcomings of pure graphene-based field-effect transistor. In this work, a field-effect transistor photodetector is demonstrated with the combination of graphene and halide perovskite quantum dots (CsPbI3) serving as conductive channel materials. The graphene is prepared by plasma enhanced chemical vapor deposition, and the quantum dots are CsPbI3 perovskite. The electrical properties of graphene and pure graphene-based field-effect transistor are detected and analyzed by using the Raman spectrum. The results show that the graphene has good intrinsic electrical properties. Unlike previous report in which bulk perovskite was used, the perovskite quantum dot field-effect transistor photodetector has an obvious light response to 400 nm signal light, and shows the excellent photoelectrical performance. Under the illumination of 400 nm light, the signal light could be detected steadily and repeatedly by the graphene-perovskite quantum dot photodetector and converted into photocurrent. The photocurrent of the photodetector has a rapid rise, and the maximum value can reach 64 A at a light power of 12 W. The corresponding responsivity is 6.4 AW-1, which is two orders of magnitude higher than that of the general single graphene photodetector (10-2 AW-1), and it is also higher than that of perovskite-based photodetector (0.4 AW-1). In addition, the photoconductive gain and detectivity arrive at 3.7104 and 6107 Jones (1 Jones=1 cmHz1/2W-1), respectively. The results of this study demonstrate that the graphene-perovskite quantum dot photodetector can be a promising candidate for commercial UV light detectors.

     

    目录

    /

    返回文章
    返回