搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子凝胶薄膜栅介石墨烯场效应管

宋航 刘杰 陈超 巴龙

引用本文:
Citation:

离子凝胶薄膜栅介石墨烯场效应管

宋航, 刘杰, 陈超, 巴龙

Graphene-based field effect transistor with ion-gel film gate

Song Hang, Liu Jie, Chen Chao, Ba Long
PDF
HTML
导出引用
  • 在石墨烯场效应晶体管栅介结构中引入具有良好电容特性或极化特性的材料可改善晶体管性能. 本文采用化学气相沉积制备的石墨烯并以PVDF-[EMIM]TF2N离子凝胶薄膜(ion-gel film)作为介质层制备底栅型石墨烯场效应管(graphene-based field effect transistor, GFET), 研究其电学特性以及真空环境和温度对GFET性能的影响. 结果表明离子凝胶薄膜栅介石墨烯场效应晶体管表现出良好的电学特性, 室温空气环境中, 与SiO2栅介GFET相比, ion-gel膜栅介GFET开关比(Jon/Joff)和跨导(gm)分别提高至6.95和3.68×10–2 mS, 而狄拉克电压(VDirac)低至1.3 V; 真空环境下ion-gel膜栅介GFET狄拉克电压最低可降至0.4 V; 随着温度的升高, GFET的跨导最高可提升至6.11×10–2 mS.
    Graphene is a kind of two-dimensional material with high light transmittance, high mechanical properties and high carrier mobility. The energy band of graphene can be turned by doping and electric field. Researches on the application of graphene to electronic devices focused on field effect transistors. For improving the performance, one generally improves the fabrication process and device structure, but many researchers chose to change the material or structure of dielectric layer. Ion-gel is a kind of mixture of organic polymer mesh structure with good thermal stability and high dielectric value, prepared by macromolecule organic polymer and ionic salt electrolyte material. With the effect of electric field, cations and anions in ion-gel diffuse to form a double charge layer distribution with a charge layer on the surface of material. This capacitance characteristic is similar to that of traditional capacitor. In this paper, ion-gel (PVDF-[EMIM]TF2N) film is used as a dielectric layer material to prepare the bottom-gate graphene-based field effect transistor (GFET), which is compared with the GFET with SiO2 bottom-gate, according to electrical characteristic curves. The effect of the ion-gel film on the transconductance, switching ratio and Dirac voltage of the GFET are analyzed. The effect of the vacuum environment and temperature on the GFET performance with ion-gel film gate are also investigated. The results show that in the room-temperature environment, the switching ratio and transconductance of the ion-gel film gate GFET device increase to 6.95 and 3.68 × 10–2 mS, respectively, compared with those of the SiO2 gate GFET, while the Dirac voltage decreases to 1.3 V. The increase in transconductance and switching ratio of ion-gel film gate GFETs are mainly due to the high capacitance of ion-gel film compared with those of conventional SiO2 gate dielectrics. There will be more carriers inside the graphene while in the carrier accumulation region of GFET transfer characteristic curve, which makes graphene more conductive. The Dirac voltage of ion-gel film gate GFET can be reduced to 0.4 V in the vacuum environment; as the temperature increases, the transconductance of GFET can increase up to 6.11×10–2 mS. The results indicate that the ion-gel film-based graphene field effect transistor shows good electrical properties in serving as high dielectric constant organic dielectric materials.
      通信作者: 巴龙, balong@seu.edu.cn
      Corresponding author: Ba Long, balong@seu.edu.cn
    [1]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Zhang Y, Tang T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [4]

    Park J S, Choi H J 2015 Phys. Rev. B 92 045402Google Scholar

    [5]

    刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar

    Liu G L, Yang Z H 2018 Acta Phys. Sin. 67 076301Google Scholar

    [6]

    Lemme M C, Echtermeyer T J, Baus M, Kurz H 2007 IEEE Electr. Dev. Lett. 28 282Google Scholar

    [7]

    Frank S 2010 Nat. Nanotechnol. 5 487Google Scholar

    [8]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [9]

    Echtermeyer T J, Lemme M C, Bolten J, Baus M, Ramsteiner M, Kurz H 2007 Eur. Phys. J. Spec. Top. 148 19Google Scholar

    [10]

    Shih C J, Pfattner R, Chiu Y C, Liu N, Lei T, Kong D, Kim Y, Chou H H, Bae W G, Bao Z 2015 Nano Lett. 15 7587Google Scholar

    [11]

    Fallahazad B, Lee K, Lian G, Kim S, Corbet C M, Ferrer D A, Colombo L, Tutuc E 2012 Appl. Phys. Lett. 100 093112Google Scholar

    [12]

    Wang B, Liddell K L, Wang J, Koger B, Keating C D, Zhu J 2014 Nano Res. 7 1263Google Scholar

    [13]

    吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉 2016 物理学报 65 080701Google Scholar

    Wu C Y, Du X W, Zhou L, Cai Q, Jin Y, Tang L, Zhang H G, Hu G H, Jin Q H 2016 Acta Phys. Sin. 65 080701Google Scholar

    [14]

    Kim B J, Jang H, Lee S K, Hong B H, Ahn J H, Cho J H 2010 Nano Lett. 10 3464Google Scholar

    [15]

    Lee S K, Kim B J, Jang H, Yoon S C, Lee C, Hong B H, Rogers J A, Cho J H, Ahn J H 2011 Nano Lett. 11 4642Google Scholar

    [16]

    Bard A J, Faulkner L R 2002 Electrochemical Methods. Fundamentals and Applications (2nd Ed.) (Weinheim: WILEY-VCH Verlag GmbH)

    [17]

    Cho J H, Lee J, Xia Y, Kim B S, He Y, Renn M J, Lodge T P, Frisbie C D 2008 Nat. Mater. 7 900Google Scholar

    [18]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359Google Scholar

    [19]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [20]

    Beams R, Novotny L 2015 J. Phys.: Condens. Matter 27 83002Google Scholar

    [21]

    Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W, Brus L E 2010 Nano Lett. 10 4944Google Scholar

    [22]

    Yang Y, Brenner K, Murali R 2012 Carbon 50 1727Google Scholar

    [23]

    Jürgen R 2006 Science 313 1057Google Scholar

    [24]

    Robitaille C D, Fauteux D 1986 J. Electrochem. Soc. 133 315Google Scholar

    [25]

    Geim A K, Novoselov K S 2010 The Rise of Graphene (Nanoscience and Technology: A Collection of Reviews from Nature Journals (Singapore: World Scientific) pp 11–19

    [26]

    Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603Google Scholar

    [27]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335Google Scholar

  • 图 1  GCS模型双电荷层分布示意图 (a) 阴阳离子分散在电介质中; (b) 在外电场作用下, 电介质内部阴阳离子开始向两级移动; (c) 达到平衡后, 电介质内阴阳离子排布情况

    Fig. 1.  Schematic diagram of GCS model with dual-charge layer distribution: (a) The anions are dispersed in dielectric; (b) under the action of electric field, the anions and cations begin to move in the opposite direction; (c) the distribution of anions and cations in dielectric in equilibrium

    图 2  离子凝胶栅介的GFET制备过程

    Fig. 2.  Preparation of GFET with ion-gel film gate

    图 3  离子凝胶膜 (a) 离子凝胶膜呈透明状; (b) [EMIM]TF2N分子式; (c) PVDF分子式

    Fig. 3.  Ion-gel film: (a) Ion-gel film image; (b) molecular formula of [EMIM]TF2N; (c) molecular formula of PVDF

    图 4  离子凝胶栅介的GFET电学检测示意图

    Fig. 4.  Schematic diagram of GFET with ion-gel film gate

    图 5  离子凝胶膜表面石墨烯拉曼光谱, 其中红线为转移石墨烯后的离子凝胶膜拉曼曲线, 黑线为未转移石墨烯的离子凝胶膜拉曼曲线

    Fig. 5.  Roman spectra of graphene on ion-gel. Red line corresponds to the ion-gel film with transferred graphene. Black line corresponds to the ion-gel film without graphene

    图 6  离子凝胶膜表面石墨烯SEM图像 (a) 未转移石墨烯的离子凝胶膜表面; (b) 转移石墨烯后的离子凝胶膜表面

    Fig. 6.  SEM images of ion-gel film: (a) The ion-gel film without graphene; (b) the ion-gel film with transferred graphene

    图 7  石墨烯能带示意图

    Fig. 7.  Band diagram of graphene

    图 8  室温环境下GFET电学特性曲线 (a)离子凝胶栅介GFET的转移特性曲线; (b)离子凝胶栅介GFET的输出特性曲线; (c) SiO2栅介GFET的转移特性曲线; (d) SiO2栅介GFET的输出特性曲线

    Fig. 8.  Electrical characteristic curves of GFET at room temperature: (a) The transfer characteristic curve of GFET with ion-gel film gate; (b) the output characteristic curve of GFET with ion-gel film gate; (c) the transfer characteristic curve of GFET with SiO2 gate; (d) the output characteristic curve of GFET with SiO2 gate

    图 9  p型掺杂石墨烯能级示意图

    Fig. 9.  Energy level of p-type doped graphene

    图 10  真空对GFET电学特性的影响 (a) 转移特性曲线; (b) 狄拉克点电压和开关比; (c) 跨导

    Fig. 10.  Effect of vacuum on the electrical properties of GFET: (a) Transfer characteristic curve; (b) Dirac point voltage and current switching ratio; (c) transconductance

    图 11  温度对GFET电学特性的影响 (a) 转移特性曲线; (b) 狄拉克点电压和开关比; (c) 跨导

    Fig. 11.  Effect of temperature on the electrical properties of GFET: (a) Transfer characteristic curve; (b) Dirac point voltage and current switching ratio; (c) transconductance

  • [1]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351Google Scholar

    [2]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [3]

    Zhang Y, Tang T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R, Wang F 2009 Nature 459 820Google Scholar

    [4]

    Park J S, Choi H J 2015 Phys. Rev. B 92 045402Google Scholar

    [5]

    刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar

    Liu G L, Yang Z H 2018 Acta Phys. Sin. 67 076301Google Scholar

    [6]

    Lemme M C, Echtermeyer T J, Baus M, Kurz H 2007 IEEE Electr. Dev. Lett. 28 282Google Scholar

    [7]

    Frank S 2010 Nat. Nanotechnol. 5 487Google Scholar

    [8]

    Li X L, Wang X R, Zhang L, Lee S, Dai H J 2008 Science 319 1229Google Scholar

    [9]

    Echtermeyer T J, Lemme M C, Bolten J, Baus M, Ramsteiner M, Kurz H 2007 Eur. Phys. J. Spec. Top. 148 19Google Scholar

    [10]

    Shih C J, Pfattner R, Chiu Y C, Liu N, Lei T, Kong D, Kim Y, Chou H H, Bae W G, Bao Z 2015 Nano Lett. 15 7587Google Scholar

    [11]

    Fallahazad B, Lee K, Lian G, Kim S, Corbet C M, Ferrer D A, Colombo L, Tutuc E 2012 Appl. Phys. Lett. 100 093112Google Scholar

    [12]

    Wang B, Liddell K L, Wang J, Koger B, Keating C D, Zhu J 2014 Nano Res. 7 1263Google Scholar

    [13]

    吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉 2016 物理学报 65 080701Google Scholar

    Wu C Y, Du X W, Zhou L, Cai Q, Jin Y, Tang L, Zhang H G, Hu G H, Jin Q H 2016 Acta Phys. Sin. 65 080701Google Scholar

    [14]

    Kim B J, Jang H, Lee S K, Hong B H, Ahn J H, Cho J H 2010 Nano Lett. 10 3464Google Scholar

    [15]

    Lee S K, Kim B J, Jang H, Yoon S C, Lee C, Hong B H, Rogers J A, Cho J H, Ahn J H 2011 Nano Lett. 11 4642Google Scholar

    [16]

    Bard A J, Faulkner L R 2002 Electrochemical Methods. Fundamentals and Applications (2nd Ed.) (Weinheim: WILEY-VCH Verlag GmbH)

    [17]

    Cho J H, Lee J, Xia Y, Kim B S, He Y, Renn M J, Lodge T P, Frisbie C D 2008 Nat. Mater. 7 900Google Scholar

    [18]

    Li X, Zhu Y, Cai W, Borysiak M, Han B, Chen D, Piner R D, Colombo L, Ruoff R S 2009 Nano Lett. 9 4359Google Scholar

    [19]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706Google Scholar

    [20]

    Beams R, Novotny L 2015 J. Phys.: Condens. Matter 27 83002Google Scholar

    [21]

    Ryu S, Liu L, Berciaud S, Yu Y J, Liu H, Kim P, Flynn G W, Brus L E 2010 Nano Lett. 10 4944Google Scholar

    [22]

    Yang Y, Brenner K, Murali R 2012 Carbon 50 1727Google Scholar

    [23]

    Jürgen R 2006 Science 313 1057Google Scholar

    [24]

    Robitaille C D, Fauteux D 1986 J. Electrochem. Soc. 133 315Google Scholar

    [25]

    Geim A K, Novoselov K S 2010 The Rise of Graphene (Nanoscience and Technology: A Collection of Reviews from Nature Journals (Singapore: World Scientific) pp 11–19

    [26]

    Gierz I, Riedl C, Starke U, Ast C R, Kern K 2008 Nano Lett. 8 4603Google Scholar

    [27]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335Google Scholar

  • [1] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [2] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应. 物理学报, 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] 刘佳文, 姚若河, 刘玉荣, 耿魁伟. 一个圆柱形双栅场效应晶体管的物理模型. 物理学报, 2021, 70(15): 157302. doi: 10.7498/aps.70.20202156
    [4] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211397
    [5] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究. 物理学报, 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [6] 张娜, 刘波, 林黎蔚. He离子辐照对石墨烯微观结构及电学性能的影响. 物理学报, 2020, 69(1): 016101. doi: 10.7498/aps.69.20191344
    [7] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [8] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [9] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [11] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [12] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [13] 李丹, 刘勇, 王怀兴, 肖龙胜, 凌福日, 姚建铨. 太赫兹波段石墨烯等离子体的增益特性. 物理学报, 2016, 65(1): 015201. doi: 10.7498/aps.65.015201
    [14] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [15] 李志全, 张明, 彭涛, 岳中, 顾而丹, 李文超. 基于导模共振效应提高石墨烯表面等离子体的局域特性. 物理学报, 2016, 65(10): 105201. doi: 10.7498/aps.65.105201
    [16] 张玉萍, 刘陵玉, 陈琦, 冯志红, 王俊龙, 张晓, 张洪艳, 张会云. 具有分离门电抽运石墨烯中电子-空穴等离子体的冷却效应. 物理学报, 2013, 62(9): 097202. doi: 10.7498/aps.62.097202
    [17] 魏晓林, 陈元平, 王如志, 钟建新. 含孔缺陷石墨烯纳米条带的电学特性研究. 物理学报, 2013, 62(5): 057101. doi: 10.7498/aps.62.057101
    [18] 高勇, 马丽, 张如亮, 王冬芳. n,p柱宽度对超结SiGe功率二极管电学特性的影响. 物理学报, 2011, 60(4): 047303. doi: 10.7498/aps.60.047303
    [19] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [20] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
计量
  • 文章访问数:  9562
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-11
  • 修回日期:  2019-03-11
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回