-
通过微波等离子体化学气相淀积技术生长单晶金刚石并切割得到(110)和(111)晶面金刚石片, 以同批器件工艺制备两种晶面上栅长为6 μm的氢终端单晶金刚石场效应管, 从材料和器件特性两方面对两种晶面金刚石进行对比分析. (110)面和(111)面金刚石的表面形貌在氢终端处理后显著不同, 光学性质则彼此相似. VGS = –4 V时, (111)金刚石器件获得的最大饱和电流为80.41 mA/mm, 约为(110)金刚石器件的1.4倍; 其导通电阻为48.51 Ω·mm, 只有(110)金刚石器件导通电阻的67%. 通过对器件电容-电压特性曲线的分析得到, (111)金刚石器件沟道中最大载流子密度与(110)金刚石器件差异不大. 分析认为, (111)金刚石器件获得更高饱和电流和更低导通电阻, 应归因于较低的方阻.Diamond has great potential applications in high-power, high-frequency semiconductor devices because of its wide band gap (5.5 eV), high thermal conductivity (22W/(cm·K)), and high carrier mobility (4500 cm2/(V·s) for electron, and 3800 cm2/(V·s) for hole). It has been widely considered as an ultimate semiconductor. From the analysis of our previous work, we find that the output current of field effect transistor based on hydrogen-terminated polycrystalline diamond is usually larger than that based on single crystal diamond, and that the preferential orientations of the polycrystalline diamond are mainly
$ \langle 110\rangle $ and$ \langle 111\rangle $ shown by XRD results. Therefore, in order to further analyze the effect of surface orientation on the device performance of hydrogen-terminated diamond field effect transistor (FET), we study the devices fabricated respectively on the (110) plane and (111) plane single crystal diamond plates obtained from a single 3.5-mm-thick single crystal diamond grown by the microwave plasma chemical vapor deposition on the high-pressure high-temperature synthesized diamond substrate. Prior to processing the device, these diamond plates are characterized by atomic force microscope, Raman spectra and photoluminescence (PL) spectra. The results of Raman and PL spectra show that (110) plane and (111) plane plates originating from the same CVD single crystal diamond have no significant difference in optical property. Then the normally-on hydrogen-terminated diamond FET with a gate length of 6 μm is achieved. The device on (111) plane delivers a saturation drain current of 80.41 mA/mm at a gate voltage VGS = –4 V, which is approximately 1.4 times that of the device on (110) plane. Meanwhile, the on-resistance of the device on (111) plane is 48.51 Ω·mm, and it is only 67% of the device on (110) plane. Analyses of the capacitance-voltage show that the hole concentration of the gated device on (110) plane and (111) plane are 1.34 × 1013 cm–2 and 1.45 × 1013 cm–2, respectively, approximately at the same level. In addition, the hole density of the device on both (110) and (111) plane increase near-linearly with the increase of gate voltage from the threshold voltage to – 4 V, indicating that the control effect of the gate on the carrier in the channel is uniform. The possible reason for the higher saturation drain current as well as the lower on-resistance of the device on (111) plane is that its sheet resistance is lower.-
Keywords:
- single crystal diamond /
- (110) plane /
- (111) plane /
- field effect transistors
[1] Wort C J H, Balmer R S 2008 Mater. Today 11 22
[2] Baliga B J 1989 IEEE Electron Dev. Lett. 10 455Google Scholar
[3] Zhang C M, Zheng Y B, Jiang Z G, Lv X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 088103Google Scholar
[4] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101Google Scholar
Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta. Phys. Sin. 64 228101Google Scholar
[5] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249Google Scholar
[6] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783Google Scholar
[7] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111Google Scholar
[8] Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510Google Scholar
[9] Kawarada H 2012 Jpn. J. Appl. Phys 51 090111Google Scholar
[10] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101Google Scholar
Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta. Phys. Sin. 66 208101Google Scholar
[11] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃 2018 物理学报 67 068101Google Scholar
Zhang J F, Yang P Z, Ren Z Y, Zhang J C, Xu S R, Zhang C F, Xu L, Hao Y 2018 Acta. Phys. Sin. 67 068101Google Scholar
[12] Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Xu S R, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786Google Scholar
[13] Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Chen D Z, Yang P Z, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302Google Scholar
[14] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112
[15] Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electron Dev. Lett. 39 1373Google Scholar
[16] Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570Google Scholar
[17] Imanishi S, Horikawa K, Qi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2018 IEEE Electron Dev. Lett. 40 279
[18] Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43Google Scholar
[19] Umezawa H, Tatsumi N, Kato Y, Shikata S I 2013 Diamond Relat. Mater. 40 56Google Scholar
[20] Achard J, Tallaire A, Sussmann R, Silva F, Gicquel A 2005 J. Cryst. Growth. 284 396Google Scholar
[21] Tallaire A, Achard J, Secroun A, Gryse O D, Weerdt F D, Barjon J, Silva F, Gicquel A 2006 J. Cryst. Growth. 291 533Google Scholar
[22] Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266Google Scholar
[23] Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796Google Scholar
[24] Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509Google Scholar
[25] Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741Google Scholar
[26] Wang Y F, Chang X H, Zhang C F, Fu J, Fan S W, Bu R, Zhang J W, Wang W, Wang H X, Wang J J 2018 Diamond Relat. Mater. 81 113Google Scholar
[27] Liu J W, Liao M Y, Lmura M, Koide Y 2013 Appl. Phys. Lett. 103 092905Google Scholar
[28] Nissan C Y, Shappir J, Frohman B D 1985 Solid-State Electron. 28 717Google Scholar
[29] Liu J W, Koide Y 2017 Methods. Mol. Biol 15 217
[30] Wang Y F, Wang W, Chang X, Fu J, Liu Z, Zhao D, Shao G, Fan S, Bu R, Zhang J, Wang H X 2019 Sci. Rep. 9 5192Google Scholar
[31] Saha N C, Kasu M 2019 Diamond Relat. Mater. 92 81Google Scholar
[32] Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Yang P Z, Chen D Z, Li Y, Hao Y 2018 J. Semicond. 39 72
[33] Kasu M, Kubovic M, Aleksov A, Teofilov N, Sauer R, Kohn E, Makimoto T 2004 Jpn. J. Appl. Phys. 43 L975Google Scholar
[34] Kasu M 2017 Jpn. J. Appl. Phys. 56 01AA01Google Scholar
-
图 1 器件制备流程图 (a)氢等离子体处理; (b) Au沉积; (c)隔离工艺; (d)栅窗口光刻; (e) Au腐蚀; (f) Al沉积及剥离, 右上角为器件俯视图显微照片
Fig. 1. Schematic diagram of the device fabrication process: (a) Hydrogen plasma treatment; (b) gold deposition; (c) device isolation; (d) gate window photolithography; (e)wet etching of gold; (f) aluminum deposition and lifting off. The inset at the upper right corner of (f) is the top view of the device.
-
[1] Wort C J H, Balmer R S 2008 Mater. Today 11 22
[2] Baliga B J 1989 IEEE Electron Dev. Lett. 10 455Google Scholar
[3] Zhang C M, Zheng Y B, Jiang Z G, Lv X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 088103Google Scholar
[4] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101Google Scholar
Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta. Phys. Sin. 64 228101Google Scholar
[5] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249Google Scholar
[6] Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783Google Scholar
[7] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111Google Scholar
[8] Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510Google Scholar
[9] Kawarada H 2012 Jpn. J. Appl. Phys 51 090111Google Scholar
[10] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101Google Scholar
Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta. Phys. Sin. 66 208101Google Scholar
[11] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃 2018 物理学报 67 068101Google Scholar
Zhang J F, Yang P Z, Ren Z Y, Zhang J C, Xu S R, Zhang C F, Xu L, Hao Y 2018 Acta. Phys. Sin. 67 068101Google Scholar
[12] Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Xu S R, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786Google Scholar
[13] Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Chen D Z, Yang P Z, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302Google Scholar
[14] Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112
[15] Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electron Dev. Lett. 39 1373Google Scholar
[16] Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570Google Scholar
[17] Imanishi S, Horikawa K, Qi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2018 IEEE Electron Dev. Lett. 40 279
[18] Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43Google Scholar
[19] Umezawa H, Tatsumi N, Kato Y, Shikata S I 2013 Diamond Relat. Mater. 40 56Google Scholar
[20] Achard J, Tallaire A, Sussmann R, Silva F, Gicquel A 2005 J. Cryst. Growth. 284 396Google Scholar
[21] Tallaire A, Achard J, Secroun A, Gryse O D, Weerdt F D, Barjon J, Silva F, Gicquel A 2006 J. Cryst. Growth. 291 533Google Scholar
[22] Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266Google Scholar
[23] Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796Google Scholar
[24] Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509Google Scholar
[25] Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741Google Scholar
[26] Wang Y F, Chang X H, Zhang C F, Fu J, Fan S W, Bu R, Zhang J W, Wang W, Wang H X, Wang J J 2018 Diamond Relat. Mater. 81 113Google Scholar
[27] Liu J W, Liao M Y, Lmura M, Koide Y 2013 Appl. Phys. Lett. 103 092905Google Scholar
[28] Nissan C Y, Shappir J, Frohman B D 1985 Solid-State Electron. 28 717Google Scholar
[29] Liu J W, Koide Y 2017 Methods. Mol. Biol 15 217
[30] Wang Y F, Wang W, Chang X, Fu J, Liu Z, Zhao D, Shao G, Fan S, Bu R, Zhang J, Wang H X 2019 Sci. Rep. 9 5192Google Scholar
[31] Saha N C, Kasu M 2019 Diamond Relat. Mater. 92 81Google Scholar
[32] Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Yang P Z, Chen D Z, Li Y, Hao Y 2018 J. Semicond. 39 72
[33] Kasu M, Kubovic M, Aleksov A, Teofilov N, Sauer R, Kohn E, Makimoto T 2004 Jpn. J. Appl. Phys. 43 L975Google Scholar
[34] Kasu M 2017 Jpn. J. Appl. Phys. 56 01AA01Google Scholar
计量
- 文章访问数: 9703
- PDF下载量: 184
- 被引次数: 0