搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同晶面的氢终端单晶金刚石场效应晶体管特性

张金风 徐佳敏 任泽阳 何琦 许晟瑞 张春福 张进成 郝跃

引用本文:
Citation:

不同晶面的氢终端单晶金刚石场效应晶体管特性

张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃

Characteristics of hydrogen-terminated single crystalline diamond field effect transistors with different surface orientations

Zhang Jin-Feng, Xu Jia-Min, Ren Ze-Yang, He Qi, Xu Sheng-Rui, Zhang Chun-Fu, Zhang Jin-Cheng, Hao Yue
PDF
HTML
导出引用
  • 通过微波等离子体化学气相淀积技术生长单晶金刚石并切割得到(110)和(111)晶面金刚石片, 以同批器件工艺制备两种晶面上栅长为6 μm的氢终端单晶金刚石场效应管, 从材料和器件特性两方面对两种晶面金刚石进行对比分析. (110)面和(111)面金刚石的表面形貌在氢终端处理后显著不同, 光学性质则彼此相似. VGS = –4 V时, (111)金刚石器件获得的最大饱和电流为80.41 mA/mm, 约为(110)金刚石器件的1.4倍; 其导通电阻为48.51 Ω·mm, 只有(110)金刚石器件导通电阻的67%. 通过对器件电容-电压特性曲线的分析得到, (111)金刚石器件沟道中最大载流子密度与(110)金刚石器件差异不大. 分析认为, (111)金刚石器件获得更高饱和电流和更低导通电阻, 应归因于较低的方阻.
    Diamond has great potential applications in high-power, high-frequency semiconductor devices because of its wide band gap (5.5 eV), high thermal conductivity (22W/(cm·K)), and high carrier mobility (4500 cm2/(V·s) for electron, and 3800 cm2/(V·s) for hole). It has been widely considered as an ultimate semiconductor. From the analysis of our previous work, we find that the output current of field effect transistor based on hydrogen-terminated polycrystalline diamond is usually larger than that based on single crystal diamond, and that the preferential orientations of the polycrystalline diamond are mainly $ \langle 110\rangle $ and $ \langle 111\rangle $ shown by XRD results. Therefore, in order to further analyze the effect of surface orientation on the device performance of hydrogen-terminated diamond field effect transistor (FET), we study the devices fabricated respectively on the (110) plane and (111) plane single crystal diamond plates obtained from a single 3.5-mm-thick single crystal diamond grown by the microwave plasma chemical vapor deposition on the high-pressure high-temperature synthesized diamond substrate. Prior to processing the device, these diamond plates are characterized by atomic force microscope, Raman spectra and photoluminescence (PL) spectra. The results of Raman and PL spectra show that (110) plane and (111) plane plates originating from the same CVD single crystal diamond have no significant difference in optical property. Then the normally-on hydrogen-terminated diamond FET with a gate length of 6 μm is achieved. The device on (111) plane delivers a saturation drain current of 80.41 mA/mm at a gate voltage VGS = –4 V, which is approximately 1.4 times that of the device on (110) plane. Meanwhile, the on-resistance of the device on (111) plane is 48.51 Ω·mm, and it is only 67% of the device on (110) plane. Analyses of the capacitance-voltage show that the hole concentration of the gated device on (110) plane and (111) plane are 1.34 × 1013 cm–2 and 1.45 × 1013 cm–2, respectively, approximately at the same level. In addition, the hole density of the device on both (110) and (111) plane increase near-linearly with the increase of gate voltage from the threshold voltage to – 4 V, indicating that the control effect of the gate on the carrier in the channel is uniform. The possible reason for the higher saturation drain current as well as the lower on-resistance of the device on (111) plane is that its sheet resistance is lower.
      通信作者: 任泽阳, zeyangren@xidian.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFB0406504)、国家重点实验室基金(批准号: 6142605180102)、国家自然科学基金(批准号: 61874080)、博士后创新人才支持计划(批准号: BX20190263)资助的课题
      Corresponding author: Ren Ze-Yang, zeyangren@xidian.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0406504), the Foundation of State Key Laboratory of China (Grant No. 6142605180102), the National Natural Science Foundation of China (Grant No. 61874080), and the National Postdoctoral Program for Innovative Talents (Grant No. BX20190263)
    [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455Google Scholar

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, Lv X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 088103Google Scholar

    [4]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta. Phys. Sin. 64 228101Google Scholar

    [5]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249Google Scholar

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783Google Scholar

    [7]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111Google Scholar

    [8]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510Google Scholar

    [9]

    Kawarada H 2012 Jpn. J. Appl. Phys 51 090111Google Scholar

    [10]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta. Phys. Sin. 66 208101Google Scholar

    [11]

    张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃 2018 物理学报 67 068101Google Scholar

    Zhang J F, Yang P Z, Ren Z Y, Zhang J C, Xu S R, Zhang C F, Xu L, Hao Y 2018 Acta. Phys. Sin. 67 068101Google Scholar

    [12]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Xu S R, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786Google Scholar

    [13]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Chen D Z, Yang P Z, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302Google Scholar

    [14]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [15]

    Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electron Dev. Lett. 39 1373Google Scholar

    [16]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570Google Scholar

    [17]

    Imanishi S, Horikawa K, Qi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2018 IEEE Electron Dev. Lett. 40 279

    [18]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43Google Scholar

    [19]

    Umezawa H, Tatsumi N, Kato Y, Shikata S I 2013 Diamond Relat. Mater. 40 56Google Scholar

    [20]

    Achard J, Tallaire A, Sussmann R, Silva F, Gicquel A 2005 J. Cryst. Growth. 284 396Google Scholar

    [21]

    Tallaire A, Achard J, Secroun A, Gryse O D, Weerdt F D, Barjon J, Silva F, Gicquel A 2006 J. Cryst. Growth. 291 533Google Scholar

    [22]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266Google Scholar

    [23]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796Google Scholar

    [24]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509Google Scholar

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741Google Scholar

    [26]

    Wang Y F, Chang X H, Zhang C F, Fu J, Fan S W, Bu R, Zhang J W, Wang W, Wang H X, Wang J J 2018 Diamond Relat. Mater. 81 113Google Scholar

    [27]

    Liu J W, Liao M Y, Lmura M, Koide Y 2013 Appl. Phys. Lett. 103 092905Google Scholar

    [28]

    Nissan C Y, Shappir J, Frohman B D 1985 Solid-State Electron. 28 717Google Scholar

    [29]

    Liu J W, Koide Y 2017 Methods. Mol. Biol 15 217

    [30]

    Wang Y F, Wang W, Chang X, Fu J, Liu Z, Zhao D, Shao G, Fan S, Bu R, Zhang J, Wang H X 2019 Sci. Rep. 9 5192Google Scholar

    [31]

    Saha N C, Kasu M 2019 Diamond Relat. Mater. 92 81Google Scholar

    [32]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Yang P Z, Chen D Z, Li Y, Hao Y 2018 J. Semicond. 39 72

    [33]

    Kasu M, Kubovic M, Aleksov A, Teofilov N, Sauer R, Kohn E, Makimoto T 2004 Jpn. J. Appl. Phys. 43 L975Google Scholar

    [34]

    Kasu M 2017 Jpn. J. Appl. Phys. 56 01AA01Google Scholar

  • 图 1  器件制备流程图 (a)氢等离子体处理; (b) Au沉积; (c)隔离工艺; (d)栅窗口光刻; (e) Au腐蚀; (f) Al沉积及剥离, 右上角为器件俯视图显微照片

    Fig. 1.  Schematic diagram of the device fabrication process: (a) Hydrogen plasma treatment; (b) gold deposition; (c) device isolation; (d) gate window photolithography; (e)wet etching of gold; (f) aluminum deposition and lifting off. The inset at the upper right corner of (f) is the top view of the device.

    图 2  氢等离子体处理前的金刚石表面形貌 (a) (110)面; (b) (111)面

    Fig. 2.  Surface morphology of the diamond before hydrogen plasma treatment: (a) (110) plane; (b) (111) plane.

    图 3  氢等离子体处理后的金刚石表面形貌 (a) (110)面; (b) (111)面

    Fig. 3.  Surface morphology of the diamond after hydrogen plasma treatment: (a) (110) plane; (b) (111) plane.

    图 4  不同表面金刚石的 (a) Raman光谱图, (b) PL光谱

    Fig. 4.  (a) Raman spectra and (b) photoluminescence (PL) spectra of the diamond plates with different surface orientations.

    图 5  栅-源二极管的I-V特性以及正向偏置下的拟合结果 (a) A器件I-V特性; (b) 图(a)部分栅压区的拟合结果; (c) B器件I-V特性; (d) 图(c)部分栅压区的拟合结果

    Fig. 5.  Current-voltage characteristics of the gate-source diodes and fitting results at the forward bias: (a) and (b) are for device A; (c) and (d) are for device B.

    图 6  输出特性 (a)器件A; (b)器件B

    Fig. 6.  Output characteristics: (a) Device A; (b) device B.

    图 7  转移特性 (a)器件A; (b)器件B

    Fig. 7.  Transfer and transconductance characteristics: (a) Device A; (b) device B.

    图 8  氢终端金刚石场效应管输出电流(a)和最大跨导(b)随栅长的变化(数据来自文献[26,27,2933]), MOSFET器件给出了栅金属和栅介质

    Fig. 8.  Summary of the reported (a) IDmax and (b) maximum transconductance of hydrogen-terminated diamond FETs dependent on the gate length[26,27,29-33]. The gate metal and gate dielectric are given for MOSFETs.

    图 9  栅源二极管的C-V特性以及计算出的沟道载流子浓度随VGS的变化 (a)器件A; (b)器件B

    Fig. 9.  Capacitance-voltage characteristics of the gate-source diode and the calculated hole density in the gated channel as a function of VGS: (a) Device A; (b) device B.

  • [1]

    Wort C J H, Balmer R S 2008 Mater. Today 11 22

    [2]

    Baliga B J 1989 IEEE Electron Dev. Lett. 10 455Google Scholar

    [3]

    Zhang C M, Zheng Y B, Jiang Z G, Lv X Y, Hou X, Hu S, Liu W J 2010 Chin. Phys. Lett. 27 088103Google Scholar

    [4]

    房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 228101Google Scholar

    Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta. Phys. Sin. 64 228101Google Scholar

    [5]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2005 Electron. Lett. 41 1249Google Scholar

    [6]

    Kasu M, Ueda K, Ye H, Yamauchi Y, Sasaki S, Makimoto T 2006 Diamond Relat. Mater. 15 783Google Scholar

    [7]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 IEEE Electron Dev. Lett. 33 1111Google Scholar

    [8]

    Kawarada H, Tsuboi H, Naruo T, Yamada T, Xu D, Daicho A, Saito T, Hiraiwa A 2014 Appl. Phys. Lett. 105 013510Google Scholar

    [9]

    Kawarada H 2012 Jpn. J. Appl. Phys 51 090111Google Scholar

    [10]

    任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃 2017 物理学报 66 208101Google Scholar

    Ren Z Y, Zhang J F, Zhang J C, Xu S R, Zhang C F, Quan R D, Hao Y 2017 Acta. Phys. Sin. 66 208101Google Scholar

    [11]

    张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃 2018 物理学报 67 068101Google Scholar

    Zhang J F, Yang P Z, Ren Z Y, Zhang J C, Xu S R, Zhang C F, Xu L, Hao Y 2018 Acta. Phys. Sin. 67 068101Google Scholar

    [12]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Xu S R, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 786Google Scholar

    [13]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Chen D Z, Yang P Z, Li Y, Hao Y 2017 IEEE Electron Dev. Lett. 38 1302Google Scholar

    [14]

    Hirama K, Sato H, Harada Y, Yamamoto H, Kasu M 2012 Jpn. J. Appl. Phys. 51 080112

    [15]

    Yu X X, Zhou J J, Qi C J, Cao Z Y, Kong Y C, Chen T S 2018 IEEE Electron Dev. Lett. 39 1373Google Scholar

    [16]

    Ueda K, Kasu M, Yamauchi Y, Makimoto T, Schwitters M, Twitchen D J, Scarsbrook G A, Coe S E 2006 IEEE Electron Dev. Lett. 27 570Google Scholar

    [17]

    Imanishi S, Horikawa K, Qi N, Okubo S, Kageura T, Hiraiwa A, Kawarada H 2018 IEEE Electron Dev. Lett. 40 279

    [18]

    Wang J J, He Z Z, Yu C, Song X B, Xu P, Zhang P W, Guo H, Liu J L, Li C M, Cai S J, Feng Z H 2014 Diamond Relat. Mater. 43 43Google Scholar

    [19]

    Umezawa H, Tatsumi N, Kato Y, Shikata S I 2013 Diamond Relat. Mater. 40 56Google Scholar

    [20]

    Achard J, Tallaire A, Sussmann R, Silva F, Gicquel A 2005 J. Cryst. Growth. 284 396Google Scholar

    [21]

    Tallaire A, Achard J, Secroun A, Gryse O D, Weerdt F D, Barjon J, Silva F, Gicquel A 2006 J. Cryst. Growth. 291 533Google Scholar

    [22]

    Rezek B, Sauerer C, Nebel C E, Stutzmann M, Ristein J, Ley L, Snidero E, Bergonzo P 2003 Appl. Phys. Lett. 82 2266Google Scholar

    [23]

    Kubovic M, Kasu M, Yamauchi Y, Ueda K, Kageshima H 2009 Diamond Relat. Mater. 18 796Google Scholar

    [24]

    Kasu M, Ueda K, Yamauchi Y, Makimoto T 2007 Appl. Phys. Lett. 90 043509Google Scholar

    [25]

    Kasu M, Ueda K, Kageshima H, Yamauchi Y 2008 Diamond Relat. Mater. 17 741Google Scholar

    [26]

    Wang Y F, Chang X H, Zhang C F, Fu J, Fan S W, Bu R, Zhang J W, Wang W, Wang H X, Wang J J 2018 Diamond Relat. Mater. 81 113Google Scholar

    [27]

    Liu J W, Liao M Y, Lmura M, Koide Y 2013 Appl. Phys. Lett. 103 092905Google Scholar

    [28]

    Nissan C Y, Shappir J, Frohman B D 1985 Solid-State Electron. 28 717Google Scholar

    [29]

    Liu J W, Koide Y 2017 Methods. Mol. Biol 15 217

    [30]

    Wang Y F, Wang W, Chang X, Fu J, Liu Z, Zhao D, Shao G, Fan S, Bu R, Zhang J, Wang H X 2019 Sci. Rep. 9 5192Google Scholar

    [31]

    Saha N C, Kasu M 2019 Diamond Relat. Mater. 92 81Google Scholar

    [32]

    Ren Z Y, Zhang J F, Zhang J C, Zhang C F, Yang P Z, Chen D Z, Li Y, Hao Y 2018 J. Semicond. 39 72

    [33]

    Kasu M, Kubovic M, Aleksov A, Teofilov N, Sauer R, Kohn E, Makimoto T 2004 Jpn. J. Appl. Phys. 43 L975Google Scholar

    [34]

    Kasu M 2017 Jpn. J. Appl. Phys. 56 01AA01Google Scholar

  • [1] 李璐, 张养坤, 时东霞, 张广宇. 单层二硫化钼的制备及在器件应用方面的研究. 物理学报, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [3] 丁燕, 钟粤华, 郭俊青, 卢毅, 罗昊宇, 沈云, 邓晓华. 黑磷各向异性拉曼光谱表征及电学特性. 物理学报, 2021, 70(3): 037801. doi: 10.7498/aps.70.20201271
    [4] 黄广伟, 吴坤, 陈晔, 李林祥, 张思远, 王尊刚, 朱红英, 周春芝, 张逸韵, 刘志强, 伊晓燕, 李晋闽. 单晶金刚石探测器对14 MeV单能中子的响应. 物理学报, 2021, 70(20): 202901. doi: 10.7498/aps.70.20210891
    [5] 孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴. 基于二维材料二硒化锡场效应晶体管的光电探测器. 物理学报, 2020, 69(13): 137801. doi: 10.7498/aps.69.20191960
    [6] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [7] 宋航, 刘杰, 陈超, 巴龙. 离子凝胶薄膜栅介石墨烯场效应管. 物理学报, 2019, 68(9): 097301. doi: 10.7498/aps.68.20190058
    [8] 魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展. 物理学报, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [9] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [10] 耿传文, 夏禹豪, 赵洪阳, 付秋明, 马志斌. 单晶金刚石边缘表面倾斜角度对同质外延生长的影响. 物理学报, 2018, 67(24): 248101. doi: 10.7498/aps.67.20181537
    [11] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [12] 武佩, 胡潇, 张健, 孙连峰. 硅基底石墨烯器件的现状及发展趋势. 物理学报, 2017, 66(21): 218102. doi: 10.7498/aps.66.218102
    [13] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [14] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [15] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [16] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性. 物理学报, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [17] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [18] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [19] 彭海波, 王铁山, 韩运成, 丁大杰, 徐 鹤, 程 锐, 赵永涛, 王瑜玉. 高电荷态离子与Si(110)晶面碰撞的沟道效应研究. 物理学报, 2008, 57(4): 2161-2164. doi: 10.7498/aps.57.2161
    [20] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
计量
  • 文章访问数:  9457
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-02
  • 修回日期:  2019-11-05
  • 刊出日期:  2020-01-20

/

返回文章
返回