搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高性能石墨烯霍尔传感器

黄乐 张志勇 彭练矛

引用本文:
Citation:

高性能石墨烯霍尔传感器

黄乐, 张志勇, 彭练矛

High performance graphene Hall sensors

Huang Le, Zhang Zhi-Yong, Peng Lian-Mao
PDF
导出引用
  • 本文回顾了石墨烯霍尔传感器的相关研究工作.通过改善石墨烯生长转移和霍尔元件的微加工工艺,石墨烯霍尔元件和霍尔集成电路都展示出超越传统霍尔传感器的优异性能.石墨烯霍尔元件的灵敏度、分辨率、线性度和温度稳定性等重要指标都优于传统商用霍尔元件.通过开发一套钝化工艺,霍尔元件的稳定性有了明显提升.结合石墨烯材料的特点,展示了石墨烯在柔性磁传感和多功能传感领域的新颖应用.此外,成功实现了石墨烯/硅互补型金属-氧化物-半导体(CMOS)混合霍尔集成电路,并进行了应用展示.通过发展一套低温加工工艺(不超过180 ℃),将石墨烯霍尔元件制备在硅基CMOS芯片的钝化层上,从而与硅基CMOS电路实现了单片集成.本文的研究结果表明石墨烯在霍尔磁探测方向拥有重大的性能优势,在产业化应用中有巨大发展潜力.
    The state-of-the-art graphene Hall elements and integrated circuits are reviewed. By optimizing the growth and transfer of graphene and the micro-fabrication process of Hall sensor, graphene Hall elements and integrated circuits outperform conventional Hall sensors in many aspects. Graphene Hall elements exhibit better sensitivities, resolutions, linearities and temperature stabilities than commercialized Hall elements. Through developing a set of passivation processes, the stabilities of graphene Hall elements are improved. Besides, the flexible magnetic sensing and multifunctional detection applications based on graphene are demonstrated. In addition, graphene/silicon hybrid Hall integrated circuits are realized. By developing a set of low temperature processes (below 180℃), graphene Hall elements are monolithically integrated onto the passivation layer of silicon complementary metal oxide semiconductor chip. This work demonstrates that graphene possesses significant performance advantages in Hall magnetic sensing and potentially practical applications.
      通信作者: 张志勇, zyzhang@pku.edu.cn;lmpeng@pku.edu.cn ; 彭练矛, zyzhang@pku.edu.cn;lmpeng@pku.edu.cn
    • 基金项目: 国家重点研发计划纳米科技重点专项项目(批准号:2016YF0201900)、国家自然科学基金(批准号:61390504,61621061)和北京市科学技术委员会先导与优势材料创新项目(批准号:D161100002616001-3)资助的课题.
      Corresponding author: Zhang Zhi-Yong, zyzhang@pku.edu.cn;lmpeng@pku.edu.cn ; Peng Lian-Mao, zyzhang@pku.edu.cn;lmpeng@pku.edu.cn
    • Funds: Project supported by the Nano Technology Key Development Program of China Key Research and Development Plan (Grant No. 2016YF0201900), the National Natural Science Foundation of China (Grant Nos. 61390504, 61621061), and the Beijing Science and Technology Commission Pilot and Material Innovation Project, China (Grant No. D161100002616001-3).
    [1]

    Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng L 2013 Sci. Rep. UK 3 1207

    [2]

    Popovic R S 2004 Hall Effect Devices (2nd Ed.) (London: IOP Publishing)

    [3]

    Hara T, Mihara M, Toyoda N, Zama M 1982 IEEE Trans. Electron Dev. 29 78

    [4]

    Shibasaki I 1997 J. Cryst. Growth 175 13

    [5]

    Berus T, Oszwaldowski M, Grabowski J 2004 Sensor. Actuat. A: Phys. 116 75

    [6]

    Liu C S, Kou B M, Zhong L 2009 Practical Handbook of Holzer Sensors (Vol. 1) (Beijing: China Electric Power Press) pp100-250 (in Chinese) [刘畅生, 寇宝明, 钟龙 2009 霍尔传感器实用手册(第一版) (北京: 中国电力出版社) 第100250页]

    [7]

    Xu H, Huang L, Zhang Z, Chen B, Zhong H, Peng L 2013 Appl. Phys. Lett. 103 112405

    [8]

    Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng L 2014 Appl. Phys. Lett. 104 183106

    [9]

    Zhang Y, Mendez E E, Du X 2011 ACS Nano 5 8124

    [10]

    Kunets V P, Black W T, Mazur Y I, Guzun D, Salamo G J, Goel N, Mishima T D, Deen D A, Murphy S Q, Santos M B 2005 J. Appl. Phys. 98 014506

    [11]

    Kazakova O, Gallop J C, Cox D C, Brown E, Cuenat A, Suzuki K 2008 IEEE Trans. Magn. 44 4480

    [12]

    Kunets V P, Dobbert J, Mazur Y I, Salamo G J, Mueller U, Masselink W T, Kostial H, Wiebicke E 2008 J. Mater. Sci.: Mater. El. 19 776

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L 2013 Adv. Mater. 25 2326

    [15]

    Han T, Lee Y, Choi M, Woo S, Bae S, Hong B H, Ahn J, Lee T 2012 Nat. Photon. 6 105

    [16]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [17]

    Fang T, Konar A, Xing H, Jena D 2007 Appl. Phys. Lett. 91 092109

    [18]

    Huang L, Xu H, Zhang Z, Chen C, Jiang J, Ma X, Chen B, Li Z, Zhong H, Peng L 2014 Sci. Rep. 4 5548

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [21]

    de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92

    [22]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J, Hong B H 2009 Nature 457 706

    [23]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [24]

    Shi R, Xu H, Chen B, Zhang Z, Peng L 2013 Appl. Phys. Lett. 102 113102

    [25]

    Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng L 2014 Nanoscale 6 15255

    [26]

    Bando M, Ohashi T, Dede M, Akram R, Oral A, Park S Y, Shibasaki I, Handa H, Sandhu A 2009 J. Appl. Phys. 105 07E909

    [27]

    Tang C, Li M, Li L J, Chi C C, Chen J C 2011 Appl. Phys. Lett. 99 112107

    [28]

    Panchal V, Cedergren K, Yakimova R, Tzalenchuk A, Kubatkin S, Kazakova O 2012 J. Appl. Phys. 111 07E509

    [29]

    Panchal V, Iglesias-Freire O, Lartsev A, Yakimova R, Asenjo A, Kazakova O 2013 IEEE Trans. Magn. 49 3520

    [30]

    Chen B, Huang L, Ma X, Dong L, Zhang Z, Peng L 2015 Carbon 94 585

    [31]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [32]

    Wang Z, Shaygan M, Otto M, Schall D, Neumaier D 2016 Nanoscale 8 7683

    [33]

    Huang L, Zhang Z, Chen B, Peng L 2015 IEEE International Electron Devices Meeting (IEDM) Washington D. C., USA, December 6-10, 2015 33.5

    [34]

    Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [35]

    Huang L, Zhang Z, Li Z, Chen B, Ma X, Dong L, Peng L 2015 Acs Appl. Mater. Inter. 7 9581

    [36]

    Lee J, Tao L, Parrish K N, Hao Y, Ruoff R S, Akinwande D 2012 Appl. Phys. Lett. 101 252109

    [37]

    Lee K, Qazi M, Kong J, Chandrakasan A P 2010 IEEE Trans. Electron Dev. 57 3418

    [38]

    Chen X, Akinwande D, Lee K, Close G F, Yasuda S, Paul B C, Fujita S, Kong J, Wong H S P 2010 IEEE Trans. Electron Dev. 57 3137

    [39]

    Lee K, Park H, Kong J, Chandrakasan A P 2013 IEEE Trans. Electron Dev. 60 383

  • [1]

    Xu H, Zhang Z, Shi R, Liu H, Wang Z, Wang S, Peng L 2013 Sci. Rep. UK 3 1207

    [2]

    Popovic R S 2004 Hall Effect Devices (2nd Ed.) (London: IOP Publishing)

    [3]

    Hara T, Mihara M, Toyoda N, Zama M 1982 IEEE Trans. Electron Dev. 29 78

    [4]

    Shibasaki I 1997 J. Cryst. Growth 175 13

    [5]

    Berus T, Oszwaldowski M, Grabowski J 2004 Sensor. Actuat. A: Phys. 116 75

    [6]

    Liu C S, Kou B M, Zhong L 2009 Practical Handbook of Holzer Sensors (Vol. 1) (Beijing: China Electric Power Press) pp100-250 (in Chinese) [刘畅生, 寇宝明, 钟龙 2009 霍尔传感器实用手册(第一版) (北京: 中国电力出版社) 第100250页]

    [7]

    Xu H, Huang L, Zhang Z, Chen B, Zhong H, Peng L 2013 Appl. Phys. Lett. 103 112405

    [8]

    Huang L, Zhang Z, Chen B, Ma X, Zhong H, Peng L 2014 Appl. Phys. Lett. 104 183106

    [9]

    Zhang Y, Mendez E E, Du X 2011 ACS Nano 5 8124

    [10]

    Kunets V P, Black W T, Mazur Y I, Guzun D, Salamo G J, Goel N, Mishima T D, Deen D A, Murphy S Q, Santos M B 2005 J. Appl. Phys. 98 014506

    [11]

    Kazakova O, Gallop J C, Cox D C, Brown E, Cuenat A, Suzuki K 2008 IEEE Trans. Magn. 44 4480

    [12]

    Kunets V P, Dobbert J, Mazur Y I, Salamo G J, Mueller U, Masselink W T, Kostial H, Wiebicke E 2008 J. Mater. Sci.: Mater. El. 19 776

    [13]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [14]

    Meng Y, Zhao Y, Hu C, Cheng H, Hu Y, Zhang Z, Shi G, Qu L 2013 Adv. Mater. 25 2326

    [15]

    Han T, Lee Y, Choi M, Woo S, Bae S, Hong B H, Ahn J, Lee T 2012 Nat. Photon. 6 105

    [16]

    Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, Ishigami M 2008 Nat. Phys. 4 377

    [17]

    Fang T, Konar A, Xing H, Jena D 2007 Appl. Phys. Lett. 91 092109

    [18]

    Huang L, Xu H, Zhang Z, Chen C, Jiang J, Ma X, Chen B, Li Z, Zhong H, Peng L 2014 Sci. Rep. 4 5548

    [19]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [20]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [21]

    de Heer W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, Martinez G 2007 Solid State Commun. 143 92

    [22]

    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J, Kim P, Choi J, Hong B H 2009 Nature 457 706

    [23]

    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma L, Zhang Z, Fu Q, Peng L, Bao X, Cheng H 2012 Nat. Commun. 3 699

    [24]

    Shi R, Xu H, Chen B, Zhang Z, Peng L 2013 Appl. Phys. Lett. 102 113102

    [25]

    Chen B, Huang H, Ma X, Huang L, Zhang Z, Peng L 2014 Nanoscale 6 15255

    [26]

    Bando M, Ohashi T, Dede M, Akram R, Oral A, Park S Y, Shibasaki I, Handa H, Sandhu A 2009 J. Appl. Phys. 105 07E909

    [27]

    Tang C, Li M, Li L J, Chi C C, Chen J C 2011 Appl. Phys. Lett. 99 112107

    [28]

    Panchal V, Cedergren K, Yakimova R, Tzalenchuk A, Kubatkin S, Kazakova O 2012 J. Appl. Phys. 111 07E509

    [29]

    Panchal V, Iglesias-Freire O, Lartsev A, Yakimova R, Asenjo A, Kazakova O 2013 IEEE Trans. Magn. 49 3520

    [30]

    Chen B, Huang L, Ma X, Dong L, Zhang Z, Peng L 2015 Carbon 94 585

    [31]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [32]

    Wang Z, Shaygan M, Otto M, Schall D, Neumaier D 2016 Nanoscale 8 7683

    [33]

    Huang L, Zhang Z, Chen B, Peng L 2015 IEEE International Electron Devices Meeting (IEDM) Washington D. C., USA, December 6-10, 2015 33.5

    [34]

    Novoselov K S, Fal'Ko V I, Colombo L, Gellert P R, Schwab M G, Kim K 2012 Nature 490 192

    [35]

    Huang L, Zhang Z, Li Z, Chen B, Ma X, Dong L, Peng L 2015 Acs Appl. Mater. Inter. 7 9581

    [36]

    Lee J, Tao L, Parrish K N, Hao Y, Ruoff R S, Akinwande D 2012 Appl. Phys. Lett. 101 252109

    [37]

    Lee K, Qazi M, Kong J, Chandrakasan A P 2010 IEEE Trans. Electron Dev. 57 3418

    [38]

    Chen X, Akinwande D, Lee K, Close G F, Yasuda S, Paul B C, Fujita S, Kong J, Wong H S P 2010 IEEE Trans. Electron Dev. 57 3137

    [39]

    Lee K, Park H, Kong J, Chandrakasan A P 2013 IEEE Trans. Electron Dev. 60 383

  • [1] 张逸飞, 刘媛, 梅家栋, 王军转, 王肖沐, 施毅. 基于纳米金属阵列天线的石墨烯/硅近红外探测器. 物理学报, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] 万震, 李成, 刘宇健, 宋学锋, 樊尚春. 石墨烯谐振式力学量传感器研究进展. 物理学报, 2022, 71(12): 126801. doi: 10.7498/aps.71.20220215
    [3] 李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷. 双层石墨烯中的偶数分母分数量子霍尔态. 物理学报, 2022, 71(18): 187202. doi: 10.7498/aps.71.20220905
    [4] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用. 物理学报, 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [5] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [6] 莫军, 冯国英, 杨莫愁, 廖宇, 周昊, 周寿桓. 基于石墨烯的宽带全光空间调制器. 物理学报, 2018, 67(21): 214201. doi: 10.7498/aps.67.20180307
    [7] 秦志辉. 类石墨烯锗烯研究进展. 物理学报, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [8] 王小发, 张俊红, 高子叶, 夏光琼, 吴正茂. 基于石墨烯可饱和吸收体的纳秒锁模掺铥光纤激光器. 物理学报, 2017, 66(11): 114209. doi: 10.7498/aps.66.114209
    [9] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究. 物理学报, 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [10] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [11] 姜彦南, 王扬, 葛德彪, 李思敏, 曹卫平, 高喜, 于新华. 一种基于石墨烯的超宽带吸波器. 物理学报, 2016, 65(5): 054101. doi: 10.7498/aps.65.054101
    [12] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [13] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波. 物理学报, 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [14] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [15] 盛世威, 李康, 孔繁敏, 岳庆炀, 庄华伟, 赵佳. 基于石墨烯纳米带的齿形表面等离激元滤波器的研究. 物理学报, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [16] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [17] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [18] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [19] 冯德军, 黄文育, 姜守振, 季伟, 贾东方. 基于少数层石墨烯可饱和吸收的锁模光纤激光器. 物理学报, 2013, 62(5): 054202. doi: 10.7498/aps.62.054202
    [20] 谭振兵, 马丽, 刘广同, 吕力, 杨昌黎. 石墨烯量子霍尔平台与平台之间转变的标度律关系. 物理学报, 2011, 60(10): 107204. doi: 10.7498/aps.60.107204
计量
  • 文章访问数:  9880
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-07
  • 修回日期:  2017-09-16
  • 刊出日期:  2017-11-05

/

返回文章
返回