-
自2004年石墨烯被成功制备以来, 相关研究引起了广泛关注, 其中, 传感应用是一个重要方向. 目前, 有关石墨烯传感特性的研究都集中在低频, 即根据分子附着引起的电导率变化来实现检测. 然而, 由于大部分分子吸附都会使电导率发生变化, 因此该方法难以区分不同分子的特征. 论文基于Kubo公式, 结合数值仿真方法研究了单层石墨烯带的传输模式, 分析了有效模式指数与模式传输特性的关联, 证实了波导模的局域性和宽带特性. 同时, 利用一阶波导模与气体作用引起的传输强度的变化反演分子振动谱. 以SO2, CO和C7H8气体的传感为例, 基于本征分析验证了方法的有效性. 结果表明, 传输模式与分子作用能够产生耦合共振增强, 并且其变化趋势与气体分子振动谱一致; 在传输方向上, 分子与传输模式的作用范围越大, 则模式传输强度的变化越大. 该研究为实现气体分子指纹的识别和检测奠定了理论基础.Since its successful preparation in 2004, graphene has attracted a great deal of attention, and the sensing application is an important research field. But nearly all the researches about graphene sensors focus on low frequency band, of which the mechanism is mainly dependent on the detection of charge carrier concentration and conductivity variation induced by the absorption of molecules. However, due to the fact that most of the molecules absorbed on the surface of graphene will induce the change of conductivity, this method is incapable of distinguishing different molecules. Transmission mode of a single molecular layer is studied based on Kubo formula and combined with a numerical method. The relation between transmission properties and effective mode index is analyzed, and the broadband localization capability of the waveguide mode is demonstrated. Meanwhile, the variation of the transmission intensity which is due to the interaction between the first order waveguide mode and the gas is adopted to retrieve the vibration spectrum of molecules. Taking the sensing of SO2, CO and C7H8 as examples, the effectiveness of this method is verified based on eigenmode analysis. Results show that the transmission spectrum is consistent with the variation spectrum of gas molecules; besides, in the transmission direction, the larger the interaction range, the greater the attenuation of mode transmission intensity will be. This study has provided a theoretical foundation for the realization of the detection and identification of gas moleculan fingerprints.
-
Keywords:
- graphene /
- transmission mode /
- vibration spectrum of moleculae /
- eigenmode analysis
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nature Photonics 6 259
[3] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2004 Nano Letter 8 902
[4] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501
[5] Shen J H, Zhu Y H, Yang X L, Li C Z 2012 Chem. Commun. 48 3686
[6] Zhao W, He D W, Wang Y S, Du X, Xin H 2015 Chin. Phys. B 24 047204
[7] Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101(in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]
[8] Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209(in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 214209]
[9] Schedin F, Geimm A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nature Materials 6 652
[10] Yoon H J, Jun D H, Yang J H, Zhou Z Z, Yang S S, Cheng M M C 2011 Sensors and Actuator B 157 310
[11] Kulkarni G S, Reddy K, Zhong Z H, Fan X H 2014 Nature Communication 5 4376
[12] Liu J B, Mendis R, Mittleman D M 2012 Physical Review B 86 241405
[13] Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nature Materials 9 730
[14] Yang J J, Huang M, Dai X Z, Huang M Y, Liang Y 2013 Europhysics Letters 103 44001
[15] Wu L, Chu H S, Koh W S, Li E P 2010 Optics Express 18 14395
[16] Choi S H, Kim Y L, Byun K M 2011 Optics Express 19 458
[17] Verma R, Gupta B D, Jha R 2011 Sensors and Actuators B: Chemical 160 623
[18] Wu J, Zhou C H, Yu J J, Cao H C, Li S B, Jia W 2014 Optics Laser Technology 59 99
[19] Nikitin A Y, Guinea F, Garca-Vidal F J, Martn-Moreno L 2011 Physical Review B 84 161407
[20] Francescato Y, Giannini V, Yang J J, Huang M, Maier S A 2014 ACS Photonics 1 437
[21] Francescato Y, Giannini V, Maier S A 2013 New Journal of Physics 15 063020
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
[2] Tassin P, Koschny T, Kafesaki M, Soukoulis C M 2012 Nature Photonics 6 259
[3] Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N 2004 Nano Letter 8 902
[4] Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari A C, Ruoff R S, Pellegrini V 2015 Science 347 1246501
[5] Shen J H, Zhu Y H, Yang X L, Li C Z 2012 Chem. Commun. 48 3686
[6] Zhao W, He D W, Wang Y S, Du X, Xin H 2015 Chin. Phys. B 24 047204
[7] Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101(in Chinese) [周丽, 魏源, 黄志祥, 吴先良 2015 物理学报 64 018101]
[8] Zhang Q H, Han J H, Feng G Y, Xu Q X, Ding L Z, Lu X X 2012 Acta Phys. Sin. 61 214209(in Chinese) [张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔 2012 物理学报 61 214209]
[9] Schedin F, Geimm A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, Novoselov K S 2007 Nature Materials 6 652
[10] Yoon H J, Jun D H, Yang J H, Zhou Z Z, Yang S S, Cheng M M C 2011 Sensors and Actuator B 157 310
[11] Kulkarni G S, Reddy K, Zhong Z H, Fan X H 2014 Nature Communication 5 4376
[12] Liu J B, Mendis R, Mittleman D M 2012 Physical Review B 86 241405
[13] Yu N F, Wang Q J, Kats M A, Fan J A, Khanna S P, Li L H, Davies A G, Linfield E H, Capasso F 2010 Nature Materials 9 730
[14] Yang J J, Huang M, Dai X Z, Huang M Y, Liang Y 2013 Europhysics Letters 103 44001
[15] Wu L, Chu H S, Koh W S, Li E P 2010 Optics Express 18 14395
[16] Choi S H, Kim Y L, Byun K M 2011 Optics Express 19 458
[17] Verma R, Gupta B D, Jha R 2011 Sensors and Actuators B: Chemical 160 623
[18] Wu J, Zhou C H, Yu J J, Cao H C, Li S B, Jia W 2014 Optics Laser Technology 59 99
[19] Nikitin A Y, Guinea F, Garca-Vidal F J, Martn-Moreno L 2011 Physical Review B 84 161407
[20] Francescato Y, Giannini V, Yang J J, Huang M, Maier S A 2014 ACS Photonics 1 437
[21] Francescato Y, Giannini V, Maier S A 2013 New Journal of Physics 15 063020
计量
- 文章访问数: 5821
- PDF下载量: 234
- 被引次数: 0