搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子动力学模拟的铜晶面石墨烯沉积生长机理

白清顺 窦昱昊 何欣 张爱民 郭永博

引用本文:
Citation:

基于分子动力学模拟的铜晶面石墨烯沉积生长机理

白清顺, 窦昱昊, 何欣, 张爱民, 郭永博

Deposition and growth mechanism of graphene on copper crystal surface based on molecular dynamics simulation

Bai Qing-Shun, Dou Yu-Hao, He Xin, Zhang Ai-Min, Guo Yong-Bo
PDF
HTML
导出引用
  • 化学气相沉积法是大面积、高质量石墨烯沉积制备实践中的重要方法. 本文采用分子动力学仿真技术, 模拟了利用化学气相沉积法在铜(111)晶面制备石墨烯的过程, 研究揭示了石墨烯在铜(111)晶面上的微观生长机理. 研究结果表明: 石墨烯的沉积生长可描述为第一阶段的二元碳、三元碳和碳链形成阶段, 以及第二阶段的碳环生成以及缺陷愈合阶段. 研究发现沉积过程中的高温能够给碳原子提供足够的能量, 使其越过两个阶段之间的能量障碍, 实现石墨烯的沉积生长. 探究了温度与碳沉积速率对石墨烯的影响, 发现温度的影响主要体现在石墨烯的缺陷以及表面平整度两个方面. 在1300 K的温度下生长的石墨烯缺陷较少, 平整度最好. 碳沉积速率会影响石墨烯生长过程中出现的缺陷, 仿真获得了石墨烯最佳表面平整度时的碳沉积速率为5 ps–1. 本文的研究结果对铜基底表面化学气相沉积法制备石墨烯的实际应用具有指导意义.
    Chemical vapor deposition (CVD) is an essential method of depositing and fabricating large-area and high-quality graphene. In this work, molecular dynamics (MD) simulation technology is adopted to simulate the fabrication of graphene on the copper (111) crystal surface by chemical vapor deposition method. In order to eliminate the adverse effects of traditional MD method, an adapted potential system between carbon and copper atoms is introduced into the modeling of deposition and growth simulation of graphene. The results reveal the microscale growth mechanism of the graphene depositing on Cu(111) crystal surfaces, and the influence of temperature and carbon deposition rate (CDR) on the quality of graphene. The simulation results indicate that the deposition and growth of graphene consists of two stages. The first stage is to form binary carbons, trinary carbons and carbon chains. The second stage is to form carbon rings and the defects healing. The research results also reveal that high temperature can provide the carbon atoms with sufficient energy, which can help the carbon atoms to skip the energetic barrier between the two stages, and then achieve the deposition and growth of graphene. Moreover, the influence of temperature and carbon deposition rate are investigated in detail. The temperature mainly affects the defects and the flatness of graphene. The defects of graphene are the least and the surface can become the flattest at a deposition temperature of 1300 K. Higher temperature can cause the carbon atoms to irregularly move, and lower temperature can suppress the catalysis of the copper substrate. Both the higher and lower temperature can degrade the quality of the graphene surface. The CDR can influence the defects of graphene in growth. The lower value of CDR can lead to local growth on the graphene surface because of the lower nucleation density while the higher CDR is also able to cause the defects to form because of the uneven free energy distribution on the copper surface that has thermal fluctuation. It is shown that graphene can present the flattest surface when the value of CDR is set to be 5 ps–1. According to the simulation process of deposition, it validates that the bi-layer and multi-layer graphene may grow based on the deposition of original single layer of graphene. As to the deposition and growth practice, it is suggested that the temperature 1300K should be suitable for the graphene CVD process of Cu(111) surface. The results in this work can provide a reference for understanding and implementing the fabrication of graphene on the Cu substrate by CVD methods.
      通信作者: 白清顺, qshbai@hit.edu.cn ; 郭永博, ybguo@hit.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51775146, 51535003)资助的课题
      Corresponding author: Bai Qing-Shun, qshbai@hit.edu.cn ; Guo Yong-Bo, ybguo@hit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51775146, 51535003)
    [1]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [2]

    He X, Bai Q S, Shen R Q 2018 Carbon 130 672Google Scholar

    [3]

    Zhu L, Wang J, Zhang T, Ma L, Chee Wah Lim, Ding F, Zeng X 2010 Nano Lett. 10 494Google Scholar

    [4]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [5]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451Google Scholar

    [6]

    Sutter P 2009 Nat. Mater. 8 171Google Scholar

    [7]

    Choucair M, Thordarson P, Stride J A 2009 Nat. Nanotechnol. 4 30Google Scholar

    [8]

    Liao C D, Lu Y Y, Tamalampudi S R, Cheng H C, Chen Y T 2013 J. Phys. Chem. A 117 9454Google Scholar

    [9]

    Wang Y, Page A J, Nishimoto Y, Qian H J, Morokuma K, Irle S 2011 J. Am. Chem. Soc. 133 18837Google Scholar

    [10]

    Elliott J A, Shibuta Y, Amara H, Bichara C, Neyts E C 2013 Nanoscale 5 6662Google Scholar

    [11]

    Karoui S, Amara H, Bichara C, Ducastelle F 2010 ACS Nano 4 6114Google Scholar

    [12]

    Meng L, Sun Q, Wang J, Ding F 2012 J. Phys. Chem. C 116 6097Google Scholar

    [13]

    He Y Y, Wang H, Jiang S J, Mo Y J 2019 Comput. Mater. Sci. 168 17Google Scholar

    [14]

    王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801Google Scholar

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801Google Scholar

    [15]

    Rasuli R, Mostafavi K, Davoodi J 2014 J. Appl. Phys. 115 185503Google Scholar

    [16]

    Syuhada I, Rosikhin A, Fikri A, Noor F A, Winata T. 2016 AIP Conf. Proc. 1710 185503Google Scholar

    [17]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2015 Nanoscale 8 921Google Scholar

    [18]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [19]

    Brenner D W, Shenderova O A, Harrison J, Stuart S J, Ni B, Sinnott S B 2012 J. Phys. Condens. Matter 14 783Google Scholar

    [20]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 8486Google Scholar

    [21]

    Jones J E 1924 Proc R. Soc. London 106 463Google Scholar

    [22]

    Girifalco L A, Weizer V G 1959 Phys. Rev. B 114 687Google Scholar

    [23]

    Zhang J, Liu C, Shu Y, Fan J 2012 Appl. Surf. Sci. 261 690Google Scholar

    [24]

    Wu Y, Chou H, Ji H, Wu Q, Chen S, Jiang Wei, Hao Y, Kang J, Ren Y, Richard D P, Rodney S R 2012 ACS Nano 6 7731Google Scholar

    [25]

    Didar B R, Khosravian H, Balbuena P B 2018 RSC Adv. 8 27825Google Scholar

    [26]

    李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成 2017 物理学报 66 058101Google Scholar

    Li H, Fu Z B, Wang H B, Yi Y, Huang W, Zhang J C 2017 Acta Phys. Sin. 66 058101Google Scholar

  • 图 1  金属铜基底的沉积生长仿真模型

    Fig. 1.  Deposition and growth simulation model of copper substrate.

    图 2  石墨烯沉积生长的原子分布图 (a) 28.3 ps; (b) 36.1 ps; (c) 39.7 ps; (d) 42.4 ps; (e) 52.2 ps; (f) 100 ps; (g) 116 ps; (h) 118 ps; (i) 200 ps

    Fig. 2.  Atomic distributation of graphene deposition and growth: (a) 28.3 ps; (b) 36.1 ps; (c) 39.7 ps; (d) 42.4 ps; (e) 52.2 ps; (f) 100 ps; (g) 116 ps; (h) 118 ps; (i) 200 ps.

    图 3  九元碳环分裂生成五元碳环和六元碳环 (a) 73.2 ps; (b) 99.7 ps; (c) 101.4 ps

    Fig. 3.  Nine-carbon ring is decomposed into five-carbon and six-carbon rings: (a) 73.2 ps; (b) 99.7 ps; (c) 101.4 ps

    图 4  游离态碳原子嵌入生成六元碳环 (a) 90.2 ps; (b) 98.9 ps; (c) 99.1 ps; (d) 109.6 ps

    Fig. 4.  The embedding of free carbon atoms and the formation of six-carbon rings: (a) 90.2 ps; (b) 98.9 ps; (c) 99.1 ps; (d) 109.6 ps

    图 5  石墨烯在不同温度下的正面生长情况 (a) 900 K; (b) 1100 K; (c) 1300 K; (d) 1500 K

    Fig. 5.  Front growth of graphene at different temperatures: (a) 900 K; (b) 1100 K; (c) 1300 K; (d) 1500 K.

    图 6  石墨烯在不同温度下的侧面生长情况 (a) 900 K; (b) 1100 K; (c) 1300 K; (d) 1500 K

    Fig. 6.  Lateral growth of graphene at different temperatures: (a) 900 K; (b) 1100 K; (c) 1300 K; (d) 1500 K.

    图 7  石墨烯在不同温度下五元和六元碳环的数量

    Fig. 7.  The number of five-carbon and six-carbon ring in graphene at different temperatures

    图 8  不同温度下的石墨烯RMS随时间变化情况

    Fig. 8.  The change of graphene RMS with time at different temperatures.

    图 9  石墨烯在不同CDR下的正面生长情况 (a) 2 ps–1; (b) 2.5 ps–1; (c) 3.33 ps–1; (d) 5 ps–1; (e) 10 ps–1

    Fig. 9.  Front growth of graphene at various CDRs: (a) 2 ps–1; (b) 2.5 ps–1; (c) 3.33 ps–1; (d) 5 ps–1; (e) 10 ps–1.

    图 10  石墨烯在不同碳沉积速率下的侧面生长情况 (a) 2 ps–1; (b) 2.5 ps–1; (c) 3.33 ps–1; (d) 5 ps–1; (e) 10 ps–1

    Fig. 10.  Lateral growth of graphene at various CDRs: (a) 2 ps–1; (b) 2.5 ps–1; (c) 3.33 ps–1; (d) 5 ps–1; (e) 10 ps–1.

    图 11  石墨烯在不同CDR下的五元和六元碳环数量

    Fig. 11.  The number of five-carbon and six-carbon ring in graphene at various CDRs

  • [1]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [2]

    He X, Bai Q S, Shen R Q 2018 Carbon 130 672Google Scholar

    [3]

    Zhu L, Wang J, Zhang T, Ma L, Chee Wah Lim, Ding F, Zeng X 2010 Nano Lett. 10 494Google Scholar

    [4]

    Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N 2008 Nano Lett. 8 902Google Scholar

    [5]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. 102 10451Google Scholar

    [6]

    Sutter P 2009 Nat. Mater. 8 171Google Scholar

    [7]

    Choucair M, Thordarson P, Stride J A 2009 Nat. Nanotechnol. 4 30Google Scholar

    [8]

    Liao C D, Lu Y Y, Tamalampudi S R, Cheng H C, Chen Y T 2013 J. Phys. Chem. A 117 9454Google Scholar

    [9]

    Wang Y, Page A J, Nishimoto Y, Qian H J, Morokuma K, Irle S 2011 J. Am. Chem. Soc. 133 18837Google Scholar

    [10]

    Elliott J A, Shibuta Y, Amara H, Bichara C, Neyts E C 2013 Nanoscale 5 6662Google Scholar

    [11]

    Karoui S, Amara H, Bichara C, Ducastelle F 2010 ACS Nano 4 6114Google Scholar

    [12]

    Meng L, Sun Q, Wang J, Ding F 2012 J. Phys. Chem. C 116 6097Google Scholar

    [13]

    He Y Y, Wang H, Jiang S J, Mo Y J 2019 Comput. Mater. Sci. 168 17Google Scholar

    [14]

    王浪, 冯伟, 杨连乔, 张建华 2014 物理学报 63 176801Google Scholar

    Wang L, Feng W, Yang L Q, Zhang J H 2014 Acta Phys. Sin. 63 176801Google Scholar

    [15]

    Rasuli R, Mostafavi K, Davoodi J 2014 J. Appl. Phys. 115 185503Google Scholar

    [16]

    Syuhada I, Rosikhin A, Fikri A, Noor F A, Winata T. 2016 AIP Conf. Proc. 1710 185503Google Scholar

    [17]

    Xu Z, Yan T, Liu G, Qiao G, Ding F 2015 Nanoscale 8 921Google Scholar

    [18]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [19]

    Brenner D W, Shenderova O A, Harrison J, Stuart S J, Ni B, Sinnott S B 2012 J. Phys. Condens. Matter 14 783Google Scholar

    [20]

    Daw M S, Baskes M I 1984 Phys. Rev. B 29 8486Google Scholar

    [21]

    Jones J E 1924 Proc R. Soc. London 106 463Google Scholar

    [22]

    Girifalco L A, Weizer V G 1959 Phys. Rev. B 114 687Google Scholar

    [23]

    Zhang J, Liu C, Shu Y, Fan J 2012 Appl. Surf. Sci. 261 690Google Scholar

    [24]

    Wu Y, Chou H, Ji H, Wu Q, Chen S, Jiang Wei, Hao Y, Kang J, Ren Y, Richard D P, Rodney S R 2012 ACS Nano 6 7731Google Scholar

    [25]

    Didar B R, Khosravian H, Balbuena P B 2018 RSC Adv. 8 27825Google Scholar

    [26]

    李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成 2017 物理学报 66 058101Google Scholar

    Li H, Fu Z B, Wang H B, Yi Y, Huang W, Zhang J C 2017 Acta Phys. Sin. 66 058101Google Scholar

  • [1] 丁业章, 叶寅, 李多生, 徐锋, 朗文昌, 刘俊红, 温鑫. WC-Co硬质合金表面石墨烯沉积生长分子动力学仿真研究. 物理学报, 2023, 72(6): 068703. doi: 10.7498/aps.72.20221332
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [4] 陈善登, 白清顺, 窦昱昊, 郭万民, 王洪飞, 杜云龙. 金刚石晶界辅助石墨烯沉积的成核机理仿真. 物理学报, 2022, 71(8): 086103. doi: 10.7498/aps.71.20211981
    [5] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性. 物理学报, 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [6] 韩同伟, 李仁, 操淑敏, 张小燕. 官能化对五边形石墨烯力学性能的影响及机理研究. 物理学报, 2021, 70(22): 226201. doi: 10.7498/aps.70.20210764
    [7] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [8] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [9] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [10] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [11] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [12] 李浩, 付志兵, 王红斌, 易勇, 黄维, 张继成. 铜基底上双层至多层石墨烯常压化学气相沉积法制备与机理探讨. 物理学报, 2017, 66(5): 058101. doi: 10.7498/aps.66.058101
    [13] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究. 物理学报, 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [14] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [15] 徐志成, 钟伟荣. C60轰击石墨烯的瞬间动力学. 物理学报, 2014, 63(8): 083401. doi: 10.7498/aps.63.083401
    [16] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [17] 李峰, 肖传云, 阚二军, 陆瑞锋, 邓开明. 钯和铂金属在石墨烯表面不同生长机理第一性原理研究. 物理学报, 2014, 63(17): 176802. doi: 10.7498/aps.63.176802
    [18] 马彬, 饶秋华, 贺跃辉, 王世良. 单晶钨纳米线拉伸变形机理的分子动力学研究. 物理学报, 2013, 62(17): 176103. doi: 10.7498/aps.62.176103
    [19] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [20] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
计量
  • 文章访问数:  6966
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-24
  • 修回日期:  2020-07-06
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回