搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PE型压机中子衍射高温高压组装的优化设计与实验验证

江明全 李欣 房雷鸣 谢雷 陈喜平 胡启威 李强 李青泽 陈波 贺端威

引用本文:
Citation:

基于PE型压机中子衍射高温高压组装的优化设计与实验验证

江明全, 李欣, 房雷鸣, 谢雷, 陈喜平, 胡启威, 李强, 李青泽, 陈波, 贺端威

Optimal design and experimental verification of high-temperature and high-pressure assembly of neutron diffraction based on PE-type press

Jiang Ming-Quan, Li Xin, Fang Lei-Ming, Xie Lei, Chen Xi-Ping, Hu Qi-Wei, Li Qiang, Li Qing-Ze, Chen Bo, He Duan-Wei
PDF
HTML
导出引用
  • 高温高压原位中子衍射探测手段对凝聚态物理、晶体化学、地球物理以及材料科学与工程等领域的研究均有重要的意义. 本文基于中国绵阳研究堆(China Mianyang Research Reactor, CMRR)的高压中子衍射谱仪(凤凰)和1500 kN的PE型两面顶压机, 设计了一套应用于高温高压原位中子衍射实验的组装, 并利用中子衍射技术进行了实验验证及温度、压力标定. 通过对组装在高温高压下的流变控制、绝热绝缘性能提高、有效样品体积最大化等方面的优化, 获得了11.4 GPa, 1773 K高温高压条件下的中子衍射谱. 该组装的成功研制使CMRR高温高压中子衍射平台的指标得到明显提升. 同时, 对进一步提高PE型两面顶压机高温高压加载条件、扩展PE型压机在高温高压原位中子衍射领域的的应用范围, 具有重要的意义.
    High-pressure and high-temperature(high-P-T) in-situ neutron diffraction detection method is a field of growing interest, in particular, for its numerous applications in the field of condensed matter physics, crystal chemistry, geophysics, materials science and engineering. In this work, we design and optimize a set of assembly for high-P-T in-situ neutron diffraction experiment in neutron source of China by using Paris-Edinburgh(PE)-type press. The high-P-T experiment is carried out with a high-pressure neutron diffraction spectrometer (Phoenix) of China Mianyang Research Reactor (CMRR). A 1500 KN uniaxial loading system and a 1500 W constant current source provides extreme conditions of high-P-T for PE press. The toroidal anvil we use is made of tungsten carbide. We use two types of gaskets: one is machined from the null-scattering TiZr alloy and the other is made from the thermal insulation ceramic material of ZrO2. High-temperature furnace is formed by graphite. First, a simplified simulation analyses of the pressure change rates in different areas of the entire assembly are carried out, and it is concluded that the gasket I, II, III areas are designed with a gradient decreasing method. The compression ratio of the sample chamber is significantly improved. Then when the gasket reaches the same compression ratio, the cell pressure will be higher than the pressure before optimization. After that, we conduct experimental verification on the optimized design. Through a series of optimization experiments for assembly on the rheological control of gasket, the improvement of thermal insulation performance and the maximization of effective sample volume under high-P-T, the key technical indicators and design scheme of the high-P-T in-situ neutron diffraction platform are verified. The temperature and pressure in the sample cavity are calibrated by using the MgO's high-P-T in-situ neutron diffraction spectrum and equation of state. The in-situ neutron diffraction sample cavity environment of the designed platform can reach the conditions of 11.4 GPa and 1773 K. The successful development of this assembly greatly improves the experimental conditions of CMRR high-P-T neutron diffraction platform. At the same time, it has important reference significance for further improving the high-P-T loading conditions of the PE-type press and expanding the application scope of the PE-type press.
      通信作者: 房雷鸣, flmyaya2008@163.com ; 贺端威, duanweihe@scu.edu.cn
    • 基金项目: 国家自然科学基金重大科研仪器研制项目(批准号: 11427810)和国家重点研发计划(批准号: 2018YFA0305900, 2016YFA0401503)资助的课题
      Corresponding author: Fang Lei-Ming, flmyaya2008@163.com ; He Duan-Wei, duanweihe@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11427810) and the National Key Research and Development Program of China (Grant Nos. 2018YFA0305900, 2016YFA0401503)
    [1]

    Terada N, Qureshi N, Chapon L C, Osakabe T 2018 Nat. Commun. 9 4368Google Scholar

    [2]

    Bourgeat L E, Chapuis J F, Chastagnier J, Demas S, Gonzales J P, Keay M P, Laborier J L, Lelièvre B E, Losserand O, Martin P 2006 Phys. B 385 1303

    [3]

    Aksenov V, Balagurov A, Glazkov V, Kozlenko D, Naumov I, Savenko B, Sheptyakov D, Somenkov V, Bulkin A, Kudryashev V 1999 Phys. B 265 258Google Scholar

    [4]

    Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar

    [5]

    Xiang C, Hu Q, Wang Q, Xie L, Chen X, Fang L, He D 2019 Chin. Phys. B 28 070701Google Scholar

    [6]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [7]

    Zhao Y, Dreele R B V, Morgan J G 1999 High Pressure Res. 16 161Google Scholar

    [8]

    He D, Zhao Y, Daemen L, Qian J, Lokshin K, Shen T, Zhang J, Lawson A 2004 J. Appl. Phys. 95 4645Google Scholar

    [9]

    Calder S, An K, Boehler R, Dela C C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Dos S A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar

    [10]

    Boehler R, Molaison J J, Haberl B 2017 Rev. Sci. Instrum. 88 083905Google Scholar

    [11]

    Schaeffer A M, Cai W, Olejnik E, Molaison J J, Sinogeikin S, Dos S A M, Deemyad S 2015 Nat. Commun. 6 8030Google Scholar

    [12]

    Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar

    [13]

    Klotz S, Le G Y, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [14]

    Hattori T, Sano F A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo T, Suzuya K, Kamiyama T, Arai M, Yagi T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 780 55Google Scholar

    [15]

    Sano F A, Hattori T, Arima H, Yamada A, Tabata S, Kondo M, Nakamura A, Kagi H, Yagi T 2014 Rev. Sci. Instrum. 85 113905Google Scholar

    [16]

    Ohira K S, Hattori T, Harjo S, Ikeda K, Miyata N, Miyazaki T, Aoki H, Watanabe M, Sakaguchi Y, Oku T 2019 Neutron News 30 11Google Scholar

    [17]

    史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 物理学报 68 116101Google Scholar

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar

    [18]

    Xie L, Chen X P, Fang L M, Sun G A, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar

    [20]

    Li B, Woody K, Kung J 2006 J. Geophys. Res.: Solid Earth 111 11206Google Scholar

    [21]

    Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar

  • 图 1  高温高压原位中子衍射实验平台总体结构图

    Fig. 1.  Overall structure of high temperature and high pressure in-situ neutron diffraction experimental platform.

    图 2  (a)单凹曲面压砧; (b)实验前组装元件实物图 ①碳化钨压砧; ②钛锆合金; ③叶腊石环; ④氧化锆环; ⑤样品氧化镁; ⑥石墨管; ⑦氧化锆管; ⑧氧化锆片; ⑨铼片; ⑩铜箔

    Fig. 2.  (a) or ① Optical picture of the single toroidal tungsten carbide anvil; (b) pictures of the high-pressure and high-temperature cell assemblies: ② TiZr alloy gasket; ③ pyrophyllite ring; ④ ZrO2 ring; ⑤ sample of MgO; ⑥ graphite furnace; ⑦ ZrO2 tube; ⑧ ZrO2 disc; ⑨ Re foil; ⑩ Cu foil.

    图 3  模拟压缩前后组装示意图 (a)压缩前; (b)压缩后

    Fig. 3.  Assembly diagram before and after simulated compression: (a) Before compression; (b) after compression.

    图 4  优化后压砧和高温高压样品组装结构的 (a)立体示意图与(b)截面示意图 ①碳化钨压砧; ②钛锆合金; ③叶腊石环; ④氧化锆环; ⑤样品氧化镁; ⑥石墨管; ⑦氧化锆管; ⑧氧化锆片; ⑨铼片; ⑩铜箔

    Fig. 4.  Schematic diagram of (a)three dimensional and (b)sectional of the high pressure and high temperature cell assembly: ① single toroidal tungsten carbide anvil; ② TiZr alloy gasket; ③ pyrophyllite ring; ④ ZrO2 ring; ⑤ sample of MgO; ⑥ graphite furnace; ⑦ ZrO2 tube; ⑧ ZrO2 disc; ⑨ Re foil; ⑩ Cu foil.

    图 5  系统加载力和加热功率输入曲线示意图

    Fig. 5.  Loading force and heating power input curves.

    图 6  (a) 不同加载力下样品MgO的原位中子衍射谱; (b) 样品腔压力-系统加载力关系曲线

    Fig. 6.  (a) Neutron diffraction patterns under different loading force; (b) sample/cell pressures-loading force curve.

    图 7  800 kN加载下, 高温高压原位中子衍射谱与数据分析 (a)不同输入功率下MgO的中子衍射谱; (b)样品腔温度和加热输入功率关系曲线

    Fig. 7.  High pressure and high temperature neutron diffraction patterns under 800 kN loading force and data analysis: (a) Neutron diffraction patterns of MgO at different heating power; (b) sample/cell temperature-heating power curve.

    表 1  实验前后密封垫I, II, III区域的厚度和不同加载力下对应的样品腔压力

    Table 1.  Thickness of gasket I, II, III zoom before and after compression, and cell pressures under different loading force.

    Before compressionAfter compressionPressure/GPa
    No.IIIIIIIIIIII300 kN500 kN800 kN
    #15.12.02.94.31.12.12.02.9Anvil broken
    #26.02.53.44.01.32.82.84.811.4
    下载: 导出CSV

    表 2  不同系统加载力及加热输入功率下对应MgO样品的晶胞参数、样品腔压力与温度

    Table 2.  Cell parameters, pressure and temperature of MgO under different loading force and heating power.

    Load /kNPower/WMgO
    aV3V/V0P/GPaT/K
    004.22675.4210.1300
    30004.20274.220.9842.8 ± 0.3300
    50004.18673.390.9734.8 ± 0.4 300
    80004.1470.830.93911.4 ± 0.9300
    8002004.17872.920.96711.41197 ± 117
    8003154.18973.480.97411.41406 ± 117
    8005304.20874.520.98811.41773 ± 117
    下载: 导出CSV
  • [1]

    Terada N, Qureshi N, Chapon L C, Osakabe T 2018 Nat. Commun. 9 4368Google Scholar

    [2]

    Bourgeat L E, Chapuis J F, Chastagnier J, Demas S, Gonzales J P, Keay M P, Laborier J L, Lelièvre B E, Losserand O, Martin P 2006 Phys. B 385 1303

    [3]

    Aksenov V, Balagurov A, Glazkov V, Kozlenko D, Naumov I, Savenko B, Sheptyakov D, Somenkov V, Bulkin A, Kudryashev V 1999 Phys. B 265 258Google Scholar

    [4]

    Hu Q, Fang L, Li Q, Li X, Chen X, Xie L, Zhang J, Liu F, Lei L, Sun G, He D 2019 High Pressure Res. 39 655Google Scholar

    [5]

    Xiang C, Hu Q, Wang Q, Xie L, Chen X, Fang L, He D 2019 Chin. Phys. B 28 070701Google Scholar

    [6]

    Chen J, Hu Q, Fang L, He D, Chen X, Xie L, Chen B, Li X, Ni X, Fan C, Liang A 2018 Rev. Sci. Instrum. 89 053906Google Scholar

    [7]

    Zhao Y, Dreele R B V, Morgan J G 1999 High Pressure Res. 16 161Google Scholar

    [8]

    He D, Zhao Y, Daemen L, Qian J, Lokshin K, Shen T, Zhang J, Lawson A 2004 J. Appl. Phys. 95 4645Google Scholar

    [9]

    Calder S, An K, Boehler R, Dela C C R, Frontzek M D, Guthrie M, Haberl B, Huq A, Kimber S A J, Liu J, Molaison J J, Neuefeind J, Page K, Dos S A M, Taddei K M, Tulk C, Tucker M G 2018 Rev. Sci. Instrum. 89 092701Google Scholar

    [10]

    Boehler R, Molaison J J, Haberl B 2017 Rev. Sci. Instrum. 88 083905Google Scholar

    [11]

    Schaeffer A M, Cai W, Olejnik E, Molaison J J, Sinogeikin S, Dos S A M, Deemyad S 2015 Nat. Commun. 6 8030Google Scholar

    [12]

    Bull C L, Funnell N P, Tucker M G, Hull S, Francis D J, Marshall W G 2016 High Pressure Res. 36 493Google Scholar

    [13]

    Klotz S, Le G Y, Strässle T, Stuhr U 2008 Appl. Phys. Lett. 93 091904Google Scholar

    [14]

    Hattori T, Sano F A, Arima H, Komatsu K, Yamada A, Inamura Y, Nakatani T, Seto Y, Nagai T, Utsumi W, Iitaka T, Kagi H, Katayama Y, Inoue T, Otomo T, Suzuya K, Kamiyama T, Arai M, Yagi T 2015 Nucl. Instrum. Methods Phys. Res., Sect. A 780 55Google Scholar

    [15]

    Sano F A, Hattori T, Arima H, Yamada A, Tabata S, Kondo M, Nakamura A, Kagi H, Yagi T 2014 Rev. Sci. Instrum. 85 113905Google Scholar

    [16]

    Ohira K S, Hattori T, Harjo S, Ikeda K, Miyata N, Miyazaki T, Aoki H, Watanabe M, Sakaguchi Y, Oku T 2019 Neutron News 30 11Google Scholar

    [17]

    史钰, 陈喜平, 谢雷, 孙光爱, 房雷鸣 2019 物理学报 68 116101Google Scholar

    Shi Y, Chen X P, Xie L, Sun G A, Fang L M 2019 Acta Phys. Sin. 68 116101Google Scholar

    [18]

    Xie L, Chen X P, Fang L M, Sun G A, Xie C, Chen B, Li H, Ulyanov V A, Solovei V A, Kolkhidashvili M R 2019 Nucl. Instrum. Methods Phys. Res., Sect. A 915 31Google Scholar

    [19]

    Tange Y, Nishihara Y, Tsuchiya T 2009 J. Geophys. Res. 114 03208Google Scholar

    [20]

    Li B, Woody K, Kung J 2006 J. Geophys. Res.: Solid Earth 111 11206Google Scholar

    [21]

    Martíinez D, Le G Y, Mézouar M, Syfosse G, Itié J P, Besson J M 2000 High Pressure Res. 18 339Google Scholar

  • [1] 田毅, 杜明浩, 张佳威, 贺端威. 立方大腔体静高压装置中叶腊石的传压及密封性能研究. 物理学报, 2024, 73(1): 019101. doi: 10.7498/aps.73.20231087
    [2] 肖宏宇, 李勇, 鲍志刚, 佘彦超, 王应, 李尚升. 触媒组分对高温高压金刚石大单晶生长及裂纹缺陷的影响. 物理学报, 2023, 72(2): 020701. doi: 10.7498/aps.72.20221841
    [3] 田春玲, 刘海燕, 王彪, 刘福生, 甘云丹. 稠密流体氮高温高压相变及物态方程. 物理学报, 2022, 71(15): 158701. doi: 10.7498/aps.71.20220124
    [4] 杨功章, 谢雷, 陈喜平, 何瑞琦, 韩铁鑫, 牛国梁, 房雷鸣, 贺端威. 巴黎-爱丁堡压机中子衍射高压下温度加载实验. 物理学报, 2022, 71(15): 156101. doi: 10.7498/aps.71.20220419
    [5] 尤悦, 李尚升, 宿太超, 胡美华, 胡强, 王君卓, 高广进, 郭明明, 聂媛. 高温高压下金刚石大单晶研究进展. 物理学报, 2020, 69(23): 238101. doi: 10.7498/aps.69.20200692
    [6] 张步强, 许振宇, 刘建国, 姚路, 阮俊, 胡佳屹, 夏晖晖, 聂伟, 袁峰, 阚瑞峰. 基于波长调制技术的高温高压流场温度测量方法. 物理学报, 2019, 68(23): 233301. doi: 10.7498/aps.68.20190515
    [7] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究. 物理学报, 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [8] 刘银娟, 贺端威, 王培, 唐明君, 许超, 王文丹, 刘进, 刘国端, 寇自力. 复合超硬材料的高压合成与研究. 物理学报, 2017, 66(3): 038103. doi: 10.7498/aps.66.038103
    [9] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究. 物理学报, 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [10] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [11] 蒋建军, 李和平, 代立东, 胡海英, 赵超帅. 基于拉曼频移的白宝石压腔无压标系统高温高压实验标定. 物理学报, 2015, 64(14): 149101. doi: 10.7498/aps.64.149101
    [12] 胡翠娥, 曾召益, 蔡灵仓. 极端条件下锆的动力学稳定性研究. 物理学报, 2015, 64(4): 046401. doi: 10.7498/aps.64.046401
    [13] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能. 物理学报, 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [14] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究. 物理学报, 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [15] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算. 物理学报, 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [16] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性. 物理学报, 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [17] 李英华, 常敬臻, 李雪梅, 俞宇颖, 戴程达, 张林. 铋的固相及液相多相状态方程研究. 物理学报, 2012, 61(20): 206203. doi: 10.7498/aps.61.206203
    [18] 赵艳红, 刘海风, 张弓木, 张广财. 高温高压下爆轰产物分子间相互作用的研究. 物理学报, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [19] 秦杰明, 王皓, 曾繁明, 李建利, 万玉春, 刘景和. 高温高压下MgxZn1-xO固溶体的制备. 物理学报, 2010, 59(12): 8910-8914. doi: 10.7498/aps.59.8910
    [20] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究. 物理学报, 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
计量
  • 文章访问数:  6654
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-02
  • 修回日期:  2020-07-20
  • 上网日期:  2020-11-09
  • 刊出日期:  2020-11-20

/

返回文章
返回