搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层石墨烯中的偶数分母分数量子霍尔态

李庆鑫 黄焱 陈以威 朱雨剑 朱旺 宋珺威 安冬冬 甘祺康 王开元 王浩林 麦志洪 Andy Shen 郗传英 张警蕾 于葛亮 王雷

引用本文:
Citation:

双层石墨烯中的偶数分母分数量子霍尔态

李庆鑫, 黄焱, 陈以威, 朱雨剑, 朱旺, 宋珺威, 安冬冬, 甘祺康, 王开元, 王浩林, 麦志洪, Andy Shen, 郗传英, 张警蕾, 于葛亮, 王雷

Even-denominator fractional quantum Hall state in bilayer graphene

Li Qing-Xin, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Zhu Wang, Song Jun-Wei, An Dong-Dong, Gan Qi-Kang, Wang Kai-Yuan, Wang Hao-Lin, Mai Zhi-Hong, Xi Chuan-Ying, Zhang Jing-Lei, Yu Ge-Liang, Wang Lei
PDF
HTML
导出引用
  • 在半填充的朗道能级, 复合费米子手征p波配对的Moore-Read态具有e/4的分数激发, 其中部分这种准粒子服从非阿贝尔统计, 有望用于实现拓扑量子计算. 双层石墨烯由于其电子的SU(4)对称性和电场对其性质的方便调控性, 成为研究多分量量子霍尔态的理想平台, 是实现非阿贝尔统计的候选者. 本文利用干法转移技术制备了双层石墨烯/氮化硼异质结, 通过电学输运测量展示了双层石墨烯在调节外电场和磁场下的量子霍尔态行为. 在强磁场下, 观测到了朗道能级填充因子为–5/2, –1/2, 3/2的伴随着量子化霍尔电导的不可压缩态. 随着磁场继续增强, 这些偶数分母量子霍尔态特征先增强再减弱, 对应朗道能级波函数的极化. 实验结果暗示观察到的这些偶数分母分数量子霍尔态属于由Pffafian波函数描述的拓扑态.
    At a half-filled Landau level, composite fermions with chiral p-wave pairing will form a Moore-Read state which hosts charge-e/4 fractional excitation. This excitation supports non-Abelian statistics and has potential to enable topological quantum computation. Owing to the SU(4) symmetry of electron and electric-field tunability, the bilayer graphene becomes an ideal platform for exploring physics of multi-component quantum Hall state and is candidate for realizing non-Abelian statistics. In this work, high-quality bilayer graphene/hBN heterostructure is fabricated by using dry-transfer technique, and electric transport measurement is performed to study quantum Hall state behavior in bilayer graphene under electric field and magnetic field. Under strong magnetic field, the sequences of incompressible state with quantized Hall conductivity are revealed at –5/2, –1/2, 3/2 filling of Landau level. The feature of even-denominator quantum Hall state is more visible then weaker with increasing magnetic field, and this corresponds to the polarization of Landau level wave function. The experimental results indicate that the observed even-denominator fractional quantum Hall state belongs to the topological phase described by Pfaffian wavefunction.
      通信作者: 王浩林, hlwang@nju.edu.cn ; 于葛亮, yugeliang@nju.edu.cn ; 王雷, leiwang@nju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074173)、江苏省创新人才和企业家项目(批准号: JSSCTD202101)、中国科学院合肥科学中心优秀用户项目(批准号: 2021HSC-UE007, 2021HSC-UE011)和江苏省杰出青年基金(批准号: BK20220066) 资助的课题.
      Corresponding author: Wang Hao-Lin, hlwang@nju.edu.cn ; Yu Ge-Liang, yugeliang@nju.edu.cn ; Wang Lei, leiwang@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074173), the Program for Innovative Talents and Entrepreneur in Jiangsu Province, China (Grant No. JSSCTD202101), the Excellent User Program of Hefei Science Center, Chinese Academy of Sciences, China (Grant Nos. 2021HSC-UE007, 2021HSC-UE011), and the Jiangsu Outstanding Youth Project, China (Grant No. BK20220066).
    [1]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [2]

    Jain J K 1989 Phys. Rev. Lett. 63 199Google Scholar

    [3]

    Lopez A, Fradkin E 1991 Phys. Rev. B 44 5246Google Scholar

    [4]

    Halperin B I, Lee P A, Read N 1993 Phys. Rev. B Condens. Matter. 47 7312Google Scholar

    [5]

    Moore G, Read N 1991 Nuclear Phys. B 360 362Google Scholar

    [6]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Modern Phys. 80 1083Google Scholar

    [7]

    Willett R, Eisenstein J P, Stormer H L, Tsui D C, Gossard A C, English J H 1987 Phys. Rev. Lett. 59 1776Google Scholar

    [8]

    Pan W, Xia J S, Shvarts V, et al. 1999 Phys. Rev. Lett. 83 3530Google Scholar

    [9]

    Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y, Stern A 2018 Nature 559 205Google Scholar

    [10]

    Lin X, Dillard C, Kastner M A, Pfeiffer L N, West K W 2012 Phys. Rev. B 85 165321

    [11]

    Baer S, Rössler C, Ihn T, Ensslin K, Reichl C, Wegscheider W 2014 Phys. Rev. B 90 075403

    [12]

    Zibrov A A, Spanton E M, Zhou H, Kometter C, Taniguchi T, Watanabe K, Young A F 2018 Nature Phys. 14 930Google Scholar

    [13]

    Kim Y, Balram A C, Taniguchi T, Watanabe K, Jain J K, Smet J H 2018 Nature Phys. 15 154

    [14]

    Goerbig M O 2011 Rev. Mod. Phys. 83 1193Google Scholar

    [15]

    Young A F, Dean C R, Wang L, et al. 2012 Nature Phys. 8 550Google Scholar

    [16]

    Lee K, Fallahazad B, Xue J, Dillen D C, Kim K, Taniguchi T, Watanabe K, Tutuc E 2014 Science 345 58Google Scholar

    [17]

    Kou A, Feldman B E, Levin A J, Halperin B I, Watanabe K, Taniguchi T, Yacoby A 2014 Science 345 55Google Scholar

    [18]

    Maher P, Wang L, Gao Y, et al. 2014 Science 345 61Google Scholar

    [19]

    Apalkov V M, Chakraborty T 2011 Phys. Rev. Lett. 107 186803Google Scholar

    [20]

    Papic Z, Abanin D A 2014 Phys. Rev. Lett. 112 046602Google Scholar

    [21]

    Zhu Z, Sheng D N, Sodemann I 2020 Phys. Rev. Lett. 124 097604Google Scholar

    [22]

    Zibrov A A, Kometter C, Zhou H, et al. 2017 Nature 549 360Google Scholar

    [23]

    Li J I A, Tan C, Chen S, et al. 2017 Science 358 648Google Scholar

    [24]

    Wang L, Meric I, Huang P Y, et al. 2013 Science 342 614Google Scholar

    [25]

    Hunt B M, Li J I A, Zibrov A A, et al. 2017 Nat. Commun. 8 948Google Scholar

    [26]

    McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503Google Scholar

    [27]

    Rezayi E H, Simon S H 2011 Phys. Rev. Lett. 106 116801Google Scholar

    [28]

    Wu Y H, Shi T, Jain J K 2017 Nano Lett. 17 4643Google Scholar

    [29]

    Rezayi E H 2017 Phys. Rev. Lett. 119 026801Google Scholar

    [30]

    Wang Y, Ponomarenko V, Wan Z, West K W, Baldwin K W, Pfeiffer L N, Lyanda-Geller Y, Rokhinson L P 2021 Nat. Commun. 12 5312Google Scholar

    [31]

    Wei D S, van der Sar T, Lee S H, Watanabe K, Taniguchi T, Halperin B I, Yacoby A 2018 Science 362 229Google Scholar

    [32]

    Nakamura J, Liang S, Gardner G C, Manfra M J 2020 Nature Phys. 16 931Google Scholar

    [33]

    Bartolomei H, Kumar M, Bisognin R, et al. 2020 Science 368 173Google Scholar

  • 图 1  器件结构和双层石墨烯里的分数量子霍尔态 (a) 器件结构图; (b) 温度T = 1.5 K与磁场B = 8 T时, 纵向电阻Rxx随电位移场D和填充因子ν的变化图(红色虚线表示以3为分母的分数态) (c) 双层石墨烯N = 0, 1朗道能级中四原子上波函数分布图; (d) 温度T = 1.5 K, 电位移场D = 0 V/nm与磁场B = 0 T时, 纵向电阻Rxx随载流子浓度n的变化

    Fig. 1.  Device structure and FQH states for in bilayer graphene (BLG): (a) Device schematic; (b) Rxx versus ν and D at B = 8 T and T = 1.5 K (The red dotted lines represent the fractional state with 3 as the denominator); (c) the schematic of wave function distribution on the four atomic sites of BLG for the N = 0, 1 Landau orbital states; (d) Rxx versus n at D = 0 V/nm, B = 0 T, and T = 1.5 K.

    图 2  1 < ν < 2时的分数量子霍尔态 (a) 温度T = 0.3 K与电位移场D = –0.12 V/nm时, 纵向电阻Rxx随填充因子ν和磁场B变化的二维图; (b) 固定温度T = 0.3 K、电位移场D = –0.12 V/nm与磁场B = 33.75 T时, 纵向电阻Rxx (黑色)和横向电导σxy (红色)随ν的变化

    Fig. 2.  FQH states for 1 < ν < 2: (a) Rxx as a function of ν and B at T = 0.3 K and D = –0.12 V/nm; (b) Rxx (black) and σxy (red) versus ν at B = 33.75 T, D = –0.12 V/nm and T = 0.3 K.

    图 4  –2 < ν < –3时的分数量子霍尔态 (a) 温度T = 0.3 K与电位移场D = –0.12 V/nm时, 纵向电阻Rxx随填充因子ν和磁场B变化的二维图; (b) 固定温度T = 0.3 K、电位移场D = –0.12 V/nm与磁场B = 28 T时, 纵向电阻Rxx和横向电导σxyν的变化

    Fig. 4.  FQH states for –2 < ν < –3: (a) Rxx as a function of filling factor ν and magnetic field B at T = 0.3 K and D = –0.12 V/nm; (b) Rxx (black) and σxy (red) versus ν at B = 28 T, D = –0.12 V/nm and T = 0.3 K.

    图 3  –1 < ν < 0时的分数量子霍尔态 (a) 温度T = 0.3 K与电位移场D = –0.12 V/nm时, 纵向电阻Rxx随填充因子ν和磁场B变化的二维图; (b) 固定温度T = 0.3 K、电位移场D = –0.12 V/nm与磁场B = 31.58 T时, 纵向电阻Rxx (黑色)和横向电导σxy (红色)随填充因子ν的变化

    Fig. 3.  FQH states for –1 < ν < 0: (a) Rxx as a function of ν and magnetic field B at T = 0.3 K and D = –0.12 V/nm; (b) Rxx (black) and σxy (red) versus ν at B = 31.58 T, D = –0.12 V/nm and T = 0.3 K.

    图 5  不同磁场下分数量子霍尔态的演化 (a)—(c) 分别描述了温度T = 0.3 K与电位移场D = –0.12 V/nm时, 不同磁场下纵向电阻Rxx随填充因子ν的变化 (为了能在不同磁场下显示更清楚, 每条曲线都加入了偏移量), 其中(a) –3 < ν < –2, (b) –1 < ν < 0和(c) 1 < ν < 2

    Fig. 5.  Evolution of FQH states under different magnetic fields: (a)–(c) Rxx as a function of filling factor ν at T = 0.3 K and D = –0.12 V/nm for different magnetic field, corresponding to filling fractions spanning (a) –3 < ν < –2, (b) –1 < ν < 0, and (c) 1 < ν < 2.

  • [1]

    Tsui D C, Stormer H L, Gossard A C 1982 Phys. Rev. Lett. 48 1559Google Scholar

    [2]

    Jain J K 1989 Phys. Rev. Lett. 63 199Google Scholar

    [3]

    Lopez A, Fradkin E 1991 Phys. Rev. B 44 5246Google Scholar

    [4]

    Halperin B I, Lee P A, Read N 1993 Phys. Rev. B Condens. Matter. 47 7312Google Scholar

    [5]

    Moore G, Read N 1991 Nuclear Phys. B 360 362Google Scholar

    [6]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Modern Phys. 80 1083Google Scholar

    [7]

    Willett R, Eisenstein J P, Stormer H L, Tsui D C, Gossard A C, English J H 1987 Phys. Rev. Lett. 59 1776Google Scholar

    [8]

    Pan W, Xia J S, Shvarts V, et al. 1999 Phys. Rev. Lett. 83 3530Google Scholar

    [9]

    Banerjee M, Heiblum M, Umansky V, Feldman D E, Oreg Y, Stern A 2018 Nature 559 205Google Scholar

    [10]

    Lin X, Dillard C, Kastner M A, Pfeiffer L N, West K W 2012 Phys. Rev. B 85 165321

    [11]

    Baer S, Rössler C, Ihn T, Ensslin K, Reichl C, Wegscheider W 2014 Phys. Rev. B 90 075403

    [12]

    Zibrov A A, Spanton E M, Zhou H, Kometter C, Taniguchi T, Watanabe K, Young A F 2018 Nature Phys. 14 930Google Scholar

    [13]

    Kim Y, Balram A C, Taniguchi T, Watanabe K, Jain J K, Smet J H 2018 Nature Phys. 15 154

    [14]

    Goerbig M O 2011 Rev. Mod. Phys. 83 1193Google Scholar

    [15]

    Young A F, Dean C R, Wang L, et al. 2012 Nature Phys. 8 550Google Scholar

    [16]

    Lee K, Fallahazad B, Xue J, Dillen D C, Kim K, Taniguchi T, Watanabe K, Tutuc E 2014 Science 345 58Google Scholar

    [17]

    Kou A, Feldman B E, Levin A J, Halperin B I, Watanabe K, Taniguchi T, Yacoby A 2014 Science 345 55Google Scholar

    [18]

    Maher P, Wang L, Gao Y, et al. 2014 Science 345 61Google Scholar

    [19]

    Apalkov V M, Chakraborty T 2011 Phys. Rev. Lett. 107 186803Google Scholar

    [20]

    Papic Z, Abanin D A 2014 Phys. Rev. Lett. 112 046602Google Scholar

    [21]

    Zhu Z, Sheng D N, Sodemann I 2020 Phys. Rev. Lett. 124 097604Google Scholar

    [22]

    Zibrov A A, Kometter C, Zhou H, et al. 2017 Nature 549 360Google Scholar

    [23]

    Li J I A, Tan C, Chen S, et al. 2017 Science 358 648Google Scholar

    [24]

    Wang L, Meric I, Huang P Y, et al. 2013 Science 342 614Google Scholar

    [25]

    Hunt B M, Li J I A, Zibrov A A, et al. 2017 Nat. Commun. 8 948Google Scholar

    [26]

    McCann E, Koshino M 2013 Rep. Prog. Phys. 76 056503Google Scholar

    [27]

    Rezayi E H, Simon S H 2011 Phys. Rev. Lett. 106 116801Google Scholar

    [28]

    Wu Y H, Shi T, Jain J K 2017 Nano Lett. 17 4643Google Scholar

    [29]

    Rezayi E H 2017 Phys. Rev. Lett. 119 026801Google Scholar

    [30]

    Wang Y, Ponomarenko V, Wan Z, West K W, Baldwin K W, Pfeiffer L N, Lyanda-Geller Y, Rokhinson L P 2021 Nat. Commun. 12 5312Google Scholar

    [31]

    Wei D S, van der Sar T, Lee S H, Watanabe K, Taniguchi T, Halperin B I, Yacoby A 2018 Science 362 229Google Scholar

    [32]

    Nakamura J, Liang S, Gardner G C, Manfra M J 2020 Nature Phys. 16 931Google Scholar

    [33]

    Bartolomei H, Kumar M, Bisognin R, et al. 2020 Science 368 173Google Scholar

  • [1] 高丰, 李欢庆, 宋卓, 赵宇宏. 三模晶体相场法研究应变诱导石墨烯晶界位错演化. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241368
    [2] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [3] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [4] 王晓愚, 毕卫红, 崔永兆, 付广伟, 付兴虎, 金娃, 王颖. 基于化学气相沉积方法的石墨烯-光子晶体光纤的制备研究. 物理学报, 2020, 69(19): 194202. doi: 10.7498/aps.69.20200750
    [5] 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展. 物理学报, 2019, 68(22): 220303. doi: 10.7498/aps.68.20191317
    [6] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] 陈浩, 张晓霞, 王鸿, 姬月华. 基于磁激元效应的石墨烯-金属纳米结构近红外吸收研究. 物理学报, 2018, 67(11): 118101. doi: 10.7498/aps.67.20180196
    [8] 谷季唯, 王锦程, 王志军, 李俊杰, 郭灿, 唐赛. 不同衬底条件下石墨烯结构形核过程的晶体相场法研究. 物理学报, 2017, 66(21): 216101. doi: 10.7498/aps.66.216101
    [9] 黄乐, 张志勇, 彭练矛. 高性能石墨烯霍尔传感器. 物理学报, 2017, 66(21): 218501. doi: 10.7498/aps.66.218501
    [10] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [11] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用. 物理学报, 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [12] 卢亚鑫, 马宁. 耦合电磁场对石墨烯量子磁振荡的影响. 物理学报, 2016, 65(2): 027502. doi: 10.7498/aps.65.027502
    [13] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [14] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [15] 杨光敏, 徐强, 李冰, 张汉壮, 贺小光. 不同N掺杂构型石墨烯的量子电容研究. 物理学报, 2015, 64(12): 127301. doi: 10.7498/aps.64.127301
    [16] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究. 物理学报, 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [17] 王浪, 冯伟, 杨连乔, 张建华. 化学气相沉积法制备石墨烯的铜衬底预处理研究. 物理学报, 2014, 63(17): 176801. doi: 10.7498/aps.63.176801
    [18] 陈艳丽, 彭向阳, 杨红, 常胜利, 张凯旺, 钟建新. 拓扑绝缘体Bi2Se3中层堆垛效应的第一性原理研究. 物理学报, 2014, 63(18): 187303. doi: 10.7498/aps.63.187303
    [19] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [20] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
计量
  • 文章访问数:  5137
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-08
  • 修回日期:  2022-06-20
  • 上网日期:  2022-09-08
  • 刊出日期:  2022-09-20

/

返回文章
返回