搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SnO2量子点/石墨烯复合结构的合成及其光催化性能研究

叶鹏飞 陈海涛 卜良民 张堃 韩玖荣

引用本文:
Citation:

SnO2量子点/石墨烯复合结构的合成及其光催化性能研究

叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣

Synthesis of SnO2 quantum dots/graphene composite and its photocatalytic performance

Ye Peng-Fei, Chen Hai-Tao, Bu Liang-Min, Zhang Kun, Han Jiu-Rong
PDF
导出引用
  • 本文以SnCl4·5H2O和氧化石墨烯为先驱物, 乙醇水溶液为溶剂, 采用一种简单的水热法一步合成了具有可见光催化活性的SnO2量子点(约3–5 nm)与石墨烯复合结构, 利用透射电子显微镜(TEM), 高分辨透射电子显微镜(HRTEM), X射线衍射仪(XRD), 傅里叶变换红外光谱(FT-IR)等技术对其结构进行了表征, 利用紫外可见吸收光谱(UV-vis)分析了其光学性能, 罗丹明-B染料为目标降解物研究了SnO2量子点/石墨烯复合结构可见光催化性能. 结果表明: 与纯SnO2、纯石墨烯相比, 复合结构显示出了很高的可见光催化活性. 通过对其结构进行分析, 我们提出了SnO2量子点/石墨烯复合结构的形成机制及其可见光催化活性机理.
    With SnCl4·5H2O and graphene oxide as raw materials and aqueous solution of ethanol as the solvent, we have prepared SnO2 quantum dots (diameter about 3-5 nm)/graphene nanocomposites using a facile hydrothermal method in one step, and solved the reunion of quantum dots successfully. The visible-light-driven photocatalytic efficiency of SnO2 quantum dots depends to a great extent on their dispersity. Because of the large-sized two-dimensional surface, the graphene sheet could behave as a solid support for quantum dots through interfacial interaction to avoid particle aggregation. Composites of SnO2 quantum dot/graphene show a great photocatalytic performance in visible light, and the morphology and structure of the product are characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared Spectrometer (FT-IR) and other techniques. The optical properties are investigated by using UV-visible (UV-vis) absorption spectrum. Additionally, the photocatalytic activity of the product is measured by the degradation of rhodamine-B dye solution in visible light. Results show that the preparation of samples with high catalytic activity in visible light, the shift in the optical response of composites may produce a positive effect on the improvement of photocatalytic efficiency in UV to visible spectral range Moreover, owing to its special π-conjugation structure, large specific surface area as well as high conductivity, graphene can enhance the photocatalytic activity. Compared with the pure SnO2, pure graphene catalytic performance is greatly improved in visible light, its excellent photocatalytic activity is due to the combination of strong absorption and effective separation of photogenerated carriers in the samples. Finally, the formation mechanism of the composite and its photocatalytic mechanism are studied.
    • 基金项目: 国家自然科学基金(批准号: 10647144, 11004170)资助的课题.
    • Funds: Projec supported by the National Natural Science Foundation of China (Grant Nos. 10647144, 11004170).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584

    [3]

    Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613

    [4]

    Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249

    [5]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411

    [6]

    Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274

    [7]

    Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812

    [8]

    Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893

    [9]

    Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690

    [10]

    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820

    [11]

    Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528

    [12]

    Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467

    [13]

    Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148

    [14]

    Jiang Z, Shangguan W F 2015 Catalysis Today 242 372

    [15]

    Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]

    [16]

    Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]

    [19]

    Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]

    [20]

    Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303

    [21]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [22]

    Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711

    [23]

    Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705

    [24]

    Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360

    [25]

    Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634

    [26]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [27]

    Geim A K 2009 Science 324 1530

    [28]

    Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666

    [29]

    Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339

    [30]

    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227

    [31]

    Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Zhang J, Yu J G, Jaroniec M, Gong J R 2012 Nano Lett 12 4584

    [3]

    Zhuang S D, Xu X Y, Feng B, Hu J G, Pang Y R, Zhou G, Tong L, Zhou Y X 2014 ACS Appl. Mater. Interfaces 6 613

    [4]

    Zhang Y C, Zhang M, Du Zhen Ni, Li K W, Dionysiou D D 2013 Appl. Catal. B 142-143 249

    [5]

    Gubbala S, Chakrapani V, Kumar V, Sunkara M K 2008 Adv. Funct. Mater 18 2411

    [6]

    Song F, H Su, Han J, Lau W M, Moon W J, Zhang D 2012 J.Phys.chem.C 116 10274

    [7]

    Miyauchi M, Nakajima A, Watanabe T, Hashimoto K 2002 Chem.Mater. 14 2812

    [8]

    Wu S, Cao H, Yin S, Liu X, Zhang X 2009 J.Phys.chen.C 113 17893

    [9]

    Brovelli S, Chiodini N, Lorenzi R, Lauria A, Romagnoli M, Paleari A 2012 Nat.Common. 3 690

    [10]

    Xie G, Zhang K, Guo B, Liu Q, Fang L, Gong J R 2013 Adv.mater 25 3820

    [11]

    Zhang Y C, Du Zhen Ni, Li K W, Zhang M, Dionysiou D D 2011 ACS Appl. Mater. Interfaces 3 1528

    [12]

    Lu H L, Lu C J, Tian W C, Shen H J 2015 Talanta 131 467

    [13]

    Khamatgalimov A R, Kovalenko V I 2015 Taylor & Francis. 23 148

    [14]

    Jiang Z, Shangguan W F 2015 Catalysis Today 242 372

    [15]

    Wang C Y, Yang X H, Ma Y, Feng Y Y, Xiong J L, Wang W 2014 Acta Phy.Sin. 63 157701 (in Chinese) [王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维 2014 物理学报 63 157701]

    [16]

    Zhu Y Q, Li Chao, Cao C B 2013 RSC Advances 3 11860

    [17]

    Fan B B, Guo H H, Li W, Jia Y, Zhang R 2013 Acta Phy.Sin. 62 148101 (in Chinese) [范冰冰, 郭焕焕, 李稳, 贾瑜, 张锐 2013 物理学报 62 148101]

    [18]

    Zhang Q, He Y Q, Chen X G, Hu D H, Li L J, Ji L L, Yin T 2010 Chinese Sci Bull 55 620 (in Chinese) [张琼,贺蕴秋,陈小刚,胡栋虎,李林江,季伶俐,尹婷 2010 科学通报 55 620]

    [19]

    Chen C, Ru Q, Hu S J, An B N, Song X 2014 Acta Phy.Sin. 63 198201 (in Chinese) [陈畅,汝强,胡社军,安柏楠,宋雄 2014 物理学报 63 198201]

    [20]

    Zhang Y, Tang Z R, Fu X, Xu Y J 2010 ACS Nano 4 7303

    [21]

    Chen X B, Liu L, Yu P Y, Mao S S 2011 Science 331 746

    [22]

    Wang L, Wang D, Dong Z, Zhang F, Jin J 2013 Nano Lett 13 1711

    [23]

    Li F, Song J, Yang H, Gan S, Zhang Q, Han D, Ivaska A, Niu L 2009 Nanotechnology 23 355705

    [24]

    Zhang Z Y, Zou R J, Song G S, Yu L, Chen Z G, Hu J Q 2011 Mater.Chem. 21 17360

    [25]

    Zhang J T, Xiong Z G, Zhao X S 2011 J.Mater.Chem. 21 3634

    [26]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [27]

    Geim A K 2009 Science 324 1530

    [28]

    Huang X, Qi X, Boey F, Zhang H 2012 Chem.Soc.Rev. 41 666

    [29]

    Hummers W S, Offeman R E 1958 J.Am.Chem.Soc. 80 1339

    [30]

    Zhang Z, Xiao F, Guo Y, Wang S, Liu Y 2013 ACS Appl.Mater.Interfaces 5 2227

    [31]

    Xu Y, Sheng K, Li C, Shi G 2010 ACS Nano 4 4324

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [3] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性. 物理学报, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [4] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射. 物理学报, 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [5] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展. 物理学报, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [6] 张晓波, 青芳竹, 李雪松. 化学气相沉积石墨烯薄膜的洁净转移. 物理学报, 2019, 68(9): 096801. doi: 10.7498/aps.68.20190279
    [7] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管. 物理学报, 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [8] 崔树稳, 李璐, 魏连甲, 钱萍. 双层石墨烯层间限域CO氧化反应的密度泛函研究. 物理学报, 2019, 68(21): 218101. doi: 10.7498/aps.68.20190447
    [9] 卢琪, 吕宏鸣, 伍晓明, 吴华强, 钱鹤. 石墨烯射频器件研究进展. 物理学报, 2017, 66(21): 218502. doi: 10.7498/aps.66.218502
    [10] 秦志辉. 类石墨烯锗烯研究进展. 物理学报, 2017, 66(21): 216802. doi: 10.7498/aps.66.216802
    [11] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [12] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用. 物理学报, 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [13] 禹忠, 党忠, 柯熙政, 崔真. N/B掺杂石墨烯的光学与电学性质. 物理学报, 2016, 65(24): 248103. doi: 10.7498/aps.65.248103
    [14] 金芹, 董海明, 韩奎, 王雪峰. 石墨烯超快动态光学性质. 物理学报, 2015, 64(23): 237801. doi: 10.7498/aps.64.237801
    [15] 卢晓波, 张广宇. 石墨烯莫尔超晶格. 物理学报, 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [16] 叶振强, 曹炳阳, 过增元. 石墨烯的声子热学性质研究. 物理学报, 2014, 63(15): 154704. doi: 10.7498/aps.63.154704
    [17] 谢凌云, 肖文波, 黄国庆, 胡爱荣, 刘江涛. 光子晶体增强石墨烯THz吸收. 物理学报, 2014, 63(5): 057803. doi: 10.7498/aps.63.057803
    [18] 于海玲, 朱嘉琦, 曹文鑫, 韩杰才. 金属催化制备石墨烯的研究进展. 物理学报, 2013, 62(2): 028201. doi: 10.7498/aps.62.028201
    [19] 韩同伟, 贺鹏飞. 石墨烯弛豫性能的分子动力学模拟. 物理学报, 2010, 59(5): 3408-3413. doi: 10.7498/aps.59.3408
    [20] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
计量
  • 文章访问数:  7638
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-02-02
  • 刊出日期:  2015-04-05

/

返回文章
返回