搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

悬浮石墨烯摩擦特性

李亮亮 孟凡伟 邹鲲 黄瑶 彭倚天

引用本文:
Citation:

悬浮石墨烯摩擦特性

李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天

Friction properties of suspended graphene

Li Liang-Liang, Meng Fan-Wei, Zou Kun, Huang Yao, Peng Yi-Tian
PDF
HTML
导出引用
  • 石墨烯作为固体润滑剂在微/纳米机电系统中具有巨大的应用潜力. 本文在SiO2/Si基底上制备了微孔阵列, 将石墨烯剥离在微孔上, 形成悬浮结构. 使用原子力显微镜研究悬浮石墨烯和支撑石墨烯的摩擦特性, 结果表明: 悬浮石墨烯表面摩擦力比基底支撑石墨烯明显减小, 同时在支撑石墨烯上出现的摩擦增强效应也消失. 随着石墨烯厚度的增大, 面外刚度逐渐增大, 悬浮石墨烯与支撑石墨烯的摩擦力差异逐渐减小. 此外, 使用预磨损探针时, 悬浮石墨烯和支撑石墨烯的摩擦力都显著增大, 且悬浮石墨烯的摩擦力依然比支撑石墨烯小. 通过对比不同厚度石墨烯, 不同针尖半径时悬浮石墨烯与支撑石墨烯表面摩擦力的变化, 揭示了面外变形对石墨烯摩擦力的影响, 为有效提高石墨烯固体润滑剂的摩擦性能提供了理论指导.
    Minimizing friction is a goal that has long been pursued in history. The role of micro-electromechanical system and nano-electromechanical system (MEMS/NEMS) in electronic devices is becoming more and more important. Due to the increasingly small size of the device, large surface-to-volume ratio leads to severe friction and wear problems of the device, thus limiting its performance. Graphene is considered as a good lubricating material in MEMS/NEMS due to its extremely thin size and excellent anti-friction effect. The study of nano-friction properties of graphene is of great significance in further developing the MEMS/NEMS. In this work, microporous arrays are prepared on a SiO2/Si substrate, and graphene is stripped on the micropores to form a suspension structure. The friction properties of suspended graphene and supported graphene are measured by using atomic force microscope. The results show that the nanofriction on suspended graphene is significantly reduced compared with that on supported graphene. The supported graphene experiences a frictional enhancement effect because of the puckering effect, while the friction enhancing effect disappears in the suspended graphene. With the increase of graphene thickness, the out-of-plane stiffness increases gradually, and the friction difference between suspended graphene and supported graphene decreases gradually. In addition, the nanofriction properties of suspended graphene under new tip and pretreated tip are also different. The friction between the pretreated tip and graphene is significantly higher than that between the new tip and graphene. The surface friction difference between the suspended graphene and the supported graphene decreases when the pretreated tip is used compared with the new tip. This work demonstrates that the deformability of atomic-scale structures can provide an additional channel of regulating the friction of contact interfaces. By comparing the changes of surface friction between the suspended graphene and the supported graphene with different thickness and tip sizes, the influence of out-of-surface deformation on the friction of graphene is revealed, thus providing theoretical guidance for effectively improving the friction performance of graphene solid lubricant.
      通信作者: 邹鲲, kouz@dhu.edu.cn
      Corresponding author: Zou Kun, kouz@dhu.edu.cn
    [1]

    Hainsworth S 2008 Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear (New York: Oxford University Press) pp3−10

    [2]

    Kim H J, Kim D E 2009 Int. J. Precis. Eng. Manuf. 10 141

    [3]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [4]

    Filleter T, Mcchesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102Google Scholar

    [5]

    Zeng X Z, Peng Y T, Lang H J 2017 Carbon 118 233Google Scholar

    [6]

    Zhang H W, Guo Z R, Gao H, Chang T 2015 Carbon 94 60Google Scholar

    [7]

    Elinski M B, Liu Z T, Spear J C, Batteas J D 2017 J. Phys. D: Appl. Phys. 50 103003Google Scholar

    [8]

    Frank I W, Tanenbaum D M 2007 J. Vac. Sci. Technol., B 25 2558Google Scholar

    [9]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2007 Solid State Commun. 146 351

    [11]

    Hu K M, Xue Z Y, Liu Y Q, Long H, Peng B, Yan H, Di Z F, Wang X, Lin L W, Zhang W M 2019 Small 15 1804337Google Scholar

    [12]

    Zhang S, Hou Y, Li S Z, Liu L Q, Zhang Z, Feng X Q, Li Q Y 2019 Proc. Natl. Acad. Sci. U. S. A 116 24452Google Scholar

    [13]

    Deng Z, Klimov N N, Solares S D, Li T, Xu H, Cannara R J 2013 Langmuir 29 235Google Scholar

    [14]

    Ye Z, Martini A 2014 Langmuir 30 14707Google Scholar

    [15]

    Bunch J S, Van Der Zande A M, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490Google Scholar

    [16]

    Xu K, Wang K, Zhao W, Bao W Z, Liu E, Ren Y F, Wang Miao, Fu Y J, Zeng J W, Li Z G, Zhou W, Song F Q, Wang X R, Shi Y, Wan X G, Fuhrer M S, Wang B G, Qiao Z H, Miao F, Xing D Y 2015 Nat. Commun. 6 8119Google Scholar

    [17]

    Medyanik S N, Liu W K, Sung I H, Robert W 2006 Phys. Rev. Lett. 97 136106Google Scholar

    [18]

    钱林茂, 田煜, 温诗铸 2013 纳米摩擦学 (北京: 科学出版社) 第168−173页

    Qian L M, Tian Y, Wen S T 2013 Nanotribology (Beijing: Science Press) pp168−173 (in Chinese)

    [19]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J 2016 Nature 539 541Google Scholar

    [20]

    Popov V L, Gray J A T 2012 Z. Angew. Math. Mech. 92 683Google Scholar

    [21]

    张涛, 王慧, 胡元中 2001 摩擦学学报 05 396Google Scholar

    Zhang T, Wang H, Hu Y Z 2001 Tribology 05 396Google Scholar

    [22]

    Fang L, Liu D M, Guo Y, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

  • 图 1  石墨烯的AFM形貌图和高度图

    Fig. 1.  AFM topographic image with height of graphene.

    图 2  (a) 悬浮石墨烯形貌图, 中心白框为悬浮石墨烯测试区域, 黑框为支撑石墨烯测试区域; (b) 悬浮与支撑区域摩擦力-载荷关系; (c) 支撑石墨烯侧向力曲线(150 nN载荷); (d) 悬浮石墨烯侧向力曲线(150 nN载荷)

    Fig. 2.  (a) Topography of suspended graphene, the white box is the test area for suspended graphene, the white box is the test area for supported graphene; (b) friction versus load data measured on the suspended graphene and supported graphene; (c) lateral force curves (load of 150 nN) measured on supported graphene and (d) suspended graphene.

    图 3  (a) 不同厚度支撑与悬浮石墨烯的摩擦力-载荷曲线; (b) 不同厚度支撑与悬浮石墨烯的摩擦力(100 nN载荷); (c) 不同厚度支撑与悬浮石墨烯法向力-位移曲线; (d) 支撑状态下厚层石墨烯(68 nm)侧向力曲线(150 nN载荷)

    Fig. 3.  (a) Friction versus load data measured on the suspended graphene and supported graphene of different thickness; (b) the friction of supported and suspended graphene of different thickness (load of 100 nN); (c) force-distance curves measured on suspended and supported graphene of different thickness; (d) lateral force curves (load of 150 nN) measured on supported thick grapheme (68 nm).

    图 4  石墨烯在支撑状态下(a)和悬浮状态下(b)与探针的摩擦状态示意图

    Fig. 4.  Schematic diagram of the friction process between the tip and graphene under (a) supported and (b) suspended states.

    图 5  (a)新探针和(b)预磨损探针针尖的扫描电子显微镜图像

    Fig. 5.  AFM tip (a) without and (b) with pre-wearing process before measurements obtained by scanning electron microscope (SEM).

    图 6  (a) 新针尖和预磨损针尖分别与悬浮石墨烯与支撑石墨烯的力-位移曲线; (b) 新针尖和预磨损针尖分别与悬浮石墨烯与支撑石墨烯间的摩擦力-载荷关系; (c) 新针尖和(d) 预磨损针尖测量的支撑石墨烯侧向力曲线(150 nN载荷)

    Fig. 6.  (a) Force-distance curves measured on suspended and supported graphene under new tip and pretreated tip; (b) friction-load image of the new probe tip and pretreated tip on the supported graphene and suspended graphene; (c) and (d) lateral force curves measured on supported graphene measured by different tips (load of 150 nN).

    表 1  实验所用的试剂信息

    Table 1.  The reagent information used in the experiment.

    序号名称型号/规格生产公司
    1光刻胶AZ5214苏州锐材半导体有限公司
    2显影剂NMD-
    3/2.38%
    长春应化(常熟)有限公司
    3氟化铵(NH4F)优级纯国药化试
    4氢氟酸(HF)化学纯国药化试
    5乙醇分析纯国药化试
    6丙酮分析纯国药化试
    7异丙醇分析纯国药化试
    下载: 导出CSV
  • [1]

    Hainsworth S 2008 Tribology on the Small Scale: A Bottom Up Approach to Friction, Lubrication, and Wear (New York: Oxford University Press) pp3−10

    [2]

    Kim H J, Kim D E 2009 Int. J. Precis. Eng. Manuf. 10 141

    [3]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [4]

    Filleter T, Mcchesney J L, Bostwick A, Rotenberg E, Emtsev K V, Seyller T, Horn K, Bennewitz R 2009 Phys. Rev. Lett. 102 086102Google Scholar

    [5]

    Zeng X Z, Peng Y T, Lang H J 2017 Carbon 118 233Google Scholar

    [6]

    Zhang H W, Guo Z R, Gao H, Chang T 2015 Carbon 94 60Google Scholar

    [7]

    Elinski M B, Liu Z T, Spear J C, Batteas J D 2017 J. Phys. D: Appl. Phys. 50 103003Google Scholar

    [8]

    Frank I W, Tanenbaum D M 2007 J. Vac. Sci. Technol., B 25 2558Google Scholar

    [9]

    Lee C G, Wei X D, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [10]

    Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L 2007 Solid State Commun. 146 351

    [11]

    Hu K M, Xue Z Y, Liu Y Q, Long H, Peng B, Yan H, Di Z F, Wang X, Lin L W, Zhang W M 2019 Small 15 1804337Google Scholar

    [12]

    Zhang S, Hou Y, Li S Z, Liu L Q, Zhang Z, Feng X Q, Li Q Y 2019 Proc. Natl. Acad. Sci. U. S. A 116 24452Google Scholar

    [13]

    Deng Z, Klimov N N, Solares S D, Li T, Xu H, Cannara R J 2013 Langmuir 29 235Google Scholar

    [14]

    Ye Z, Martini A 2014 Langmuir 30 14707Google Scholar

    [15]

    Bunch J S, Van Der Zande A M, Verbridge S S, Frank L W, Tanenbaum D M, Parpia J M, Craighead H G, McEuen P L 2007 Science 315 490Google Scholar

    [16]

    Xu K, Wang K, Zhao W, Bao W Z, Liu E, Ren Y F, Wang Miao, Fu Y J, Zeng J W, Li Z G, Zhou W, Song F Q, Wang X R, Shi Y, Wan X G, Fuhrer M S, Wang B G, Qiao Z H, Miao F, Xing D Y 2015 Nat. Commun. 6 8119Google Scholar

    [17]

    Medyanik S N, Liu W K, Sung I H, Robert W 2006 Phys. Rev. Lett. 97 136106Google Scholar

    [18]

    钱林茂, 田煜, 温诗铸 2013 纳米摩擦学 (北京: 科学出版社) 第168−173页

    Qian L M, Tian Y, Wen S T 2013 Nanotribology (Beijing: Science Press) pp168−173 (in Chinese)

    [19]

    Li S Z, Li Q Y, Carpick R W, Gumbsch P, Liu X Z, Ding X D, Sun J, Li J 2016 Nature 539 541Google Scholar

    [20]

    Popov V L, Gray J A T 2012 Z. Angew. Math. Mech. 92 683Google Scholar

    [21]

    张涛, 王慧, 胡元中 2001 摩擦学学报 05 396Google Scholar

    Zhang T, Wang H, Hu Y Z 2001 Tribology 05 396Google Scholar

    [22]

    Fang L, Liu D M, Guo Y, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

  • [1] 詹真, 张亚磊, 袁声军. 石墨烯莫尔超晶格的晶格弛豫与衬底效应. 物理学报, 2022, 71(18): 187302. doi: 10.7498/aps.71.20220872
    [2] 刘青阳, 徐青松, 李瑞. 氮掺杂对石墨烯摩擦学特性影响的分子动力学模拟. 物理学报, 2022, 71(14): 146801. doi: 10.7498/aps.71.20212309
    [3] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [4] 王延庆, 李佳豪, 彭勇, 赵又红, 白利春. 界面电流介入时石墨烯的载流摩擦行为. 物理学报, 2021, 70(20): 206802. doi: 10.7498/aps.70.20210892
    [5] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印. 物理学报, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [6] 陈星源, 黄瑶, 彭倚天. 电场下悬浮六方氮化硼摩擦特性的研究. 物理学报, 2021, 70(16): 166801. doi: 10.7498/aps.70.20210386
    [7] 邓剑锋, 李慧琴, 于帆, 梁齐. 机械剥离折叠石墨烯粘附与纳米摩擦性质. 物理学报, 2020, 69(7): 076802. doi: 10.7498/aps.69.20191825
    [8] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控. 物理学报, 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [9] 陈彩云, 刘进行, 张小敏, 李金龙, 任玲玲, 董国材. 扫描电子显微镜法测定金属衬底上石墨烯薄膜的覆盖度. 物理学报, 2018, 67(7): 076802. doi: 10.7498/aps.67.20172654
    [10] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [11] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [12] 蒋国平, 郝洪, 曾春航, 郝逸飞, 吴如军, 刘纪超. 冲击作用下的摩擦力效应实验研究. 物理学报, 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [13] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [14] 丁凌云, 龚中良, 黄 平. 基于耦合振子模型的摩擦力计算研究. 物理学报, 2008, 57(10): 6500-6506. doi: 10.7498/aps.57.6500
    [15] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [16] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [18] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [19] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  5427
  • PDF下载量:  115
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2020-12-09
  • 上网日期:  2021-04-08
  • 刊出日期:  2021-04-20

/

返回文章
返回