搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弹性蛋白力学特性的单分子力谱

周浩天 高翔 郑鹏 秦猛 曹毅 王炜

引用本文:
Citation:

弹性蛋白力学特性的单分子力谱

周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜

Mechanical properties of elastomeric proteins studied by single molecule force spectroscopy

Zhou Hao-Tian, Gao Xiang, Zheng Peng, Qin Meng, Cao Yi, Wang Wei
PDF
导出引用
  • 弹性蛋白是一类有着特殊力学特性的蛋白. 在生物体内它们是承受和传递力的主要媒介;在生物体外,它们更是被广泛地用作高强度的生物材料. 根据其功能不同,弹性蛋白的力学特性也各异. 有些具有比较高的力学强度,有些则具有较大的延展性和弹性. 科学家们很早就采用多种手段来人工合成弹性蛋白用于材料和纳米领域,但对于弹性蛋白的力学特性和序列结构之间的关系还不甚明晰. 本综述介绍通过单分子力谱的实验方法来直接表征单根蛋白质在受力下结构的变化,研究其力学特性. 基于Bell模型,推导出了蛋白质解折所需力与拉伸速率之间的关系,揭示了蛋白质力学强度的动力学特性,当拉伸速率较低时,解折叠力将正比于拉伸速率,对于较大的拉伸速率,解折叠力与拉伸速率成指数关系;探讨了决定蛋白质力学特性的结构因素和调控蛋白质力学特性的实验方法;介绍了单分子力谱测量的实验方法,包括基于光镊、磁镊和原子力显微镜的单分子力谱技术,着重介绍了原子力显微镜单分子力谱,并特别介绍了多聚蛋白技术来提供单分子测量的''指纹谱''和提高测量效率;论述了基于原子力显微镜单分子力谱研究蛋白质力学特性的最新进展,包括提高原子力显微镜的稳定性和力分辨率的方法,与荧光标记法相结合来提高实验效率的技术和高速扫描原子力显微镜;阐述了如何通过单分子力谱实验来理性设计蛋白质材料的力学特性,并对未来的研究热点做了展望.
    Elastomeric proteins are a special class of proteins with unique mechanical functions. They bear, transduce mechanical forces inside cell, and serve as biomaterials of high elasticities and strengths outside cell. Depending on their functions, the mechanical properties of elastomeric proteins are very diverse. Some of them are of high mechanical stability and the others are of high extensibility and toughness. Although many elastomeric proteins are engineered for the applications in the fields of biomaterials and nanotechnology, the molecular determinant of the mechanical stability remains elusive. In this review, we summarize recent advances in the field of protein mechanics studied by using single molecule force spectroscopy. Force spectroscopy enables people to probe the unfolding properties of protein domains, thus paving the way for building special proteins with characteristic mechanical functions. To begin with, it is necessary to clarify the factors and their relations with the unfolding force, which is deduced based on Bell's expression. It turns out that the unfolding force is proportional to pulling speed when the speed is relatively small, and has a logarithmic relation in the high-speed approximation. After the external determinant of the force probe is clarified, some intrinsic factors are to be discussed. Hydrogen bound and electrostatic force, rather than covalent bond, contribute to the mechanical performances of proteins. Those interactions rely on the topology structures of protein molecules. By changing the structures of proteins, researchers now manage to change the mechanical characteristics of certain proteins. Since single protein is unable to be detected by traditional optic microscope, three devices used to observe and manipulate single protein are introduced in the present paper. These include atomic force microscopy, magnetic tweezers and optical tweezers. Among them, a more detailed explanation of atomic force microscope (AFM) is provided, which briefly describes the basic mechanism and structure of AFM and possible explanation for the formation of force-extension curves. After that, several recent advances for improving the AFM based single molecule force spectroscopy techniques are highlighted. For example, Tom Perkins group [Sullan R M A, Churnside A B, Nguyen D M, Bull M S, Perkins T T 2013 Methods 60 131] has discovered that the gold-stripped tip gives more accurate and reproducible results than a gold-coated one. Matthias Rief group [Schlierf M, Berkemeier F, Rief M 2007 Biophys. J. 93 3989] has managed to increase the resolution of AFM, pushing it in pair with optical tweezers. Hermann Gaub et al. [Otten M, Ott W, Jobst M A, Milles L F, Verdorfer T, Pippig D A, Nash M A, Gaub H E 2014 Nat. Methods 11 1127] combined the microfluidic chip and DNA expression in vitro to increase the yields of interpretable single-molecule interaction traces. Toshio Ando et al. [Ando T, Uchihashi T, Fukuma T 2008 Prog. Surf. Sci. 83 337] have developed methods to increase the imaging speed of AFM. Finally, the rationally designing the mechanical properties of protein-based materials pioneered by Hongbin Li group is highlighted. They have discovered direct relationship between the mechanical properties of individual proteins and those of the protein materials. To sum up, with AFM, scientists now can explore mechanical properties of a wide range of proteins, which enables them to build biomaterials with exceptional mechanical features.
      通信作者: 秦猛, qinmeng@nju.edu.cn;caoyi@nju.edu.cn ; 曹毅, qinmeng@nju.edu.cn;caoyi@nju.edu.cn
    • 基金项目: 江苏省六大人才高峰支持计划和国家自然科学基金(批准号:21522402,11374148,11334004,81121062)资助的课题.
      Corresponding author: Qin Meng, qinmeng@nju.edu.cn;caoyi@nju.edu.cn ; Cao Yi, qinmeng@nju.edu.cn;caoyi@nju.edu.cn
    • Funds: Project supported by Six Talent Peaks Project in Jiangsu Province China and the National Natural Science Foundation of China (Grant Nos. 21522402, 11374148, 11334004, 81121062).
    [1]

    Strong M 2004 PLoS Biol. 2 305

    [2]

    Berkemeier F, Bertz M, Xiao S, Pinotsis N, Wilmanns M, Grater F, Rief M 2011 Proc. Natl. Acad. Sci. USA 108 14139

    [3]

    Bullard B, Garcia T, Benes V, Leake M C, Linke W A, Oberhauser A F 2006 Proc. Natl. Acad. Sci. USA 103 4451

    [4]

    Scharnagl C, Reif M, Friedrich J 2005 Biochim. Biophys. Acta 1749 187

    [5]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [6]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [7]

    Oberhauser A F, Marszalek P E, Erickson H P, Fernandez J M 1998 Nature 393 181

    [8]

    Rief M, Gautel M, Schemmel A, Gaub H E 1998 Biophys. J. 75 3008

    [9]

    Rief M, Pascual J, Saraste M, Gaub H E 1999 J. Mol. Biol. 286 553

    [10]

    Rief M, Gautel M, Gaub H E 2000 Adv. Exp. Med. Biol. 481 129

    [11]

    Schwaiger I, Sattler C, Hostetter D R, Rief M 2002 Nat. Mater. 1 232

    [12]

    Urry D W, Parker T M 2002 J. Muscle Res. Cell Motil. 23 543

    [13]

    Guerette P A, Ginzinger D G, Weber B H, Gosline J M 1996 Science 272 112

    [14]

    Smith B L, Schaffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K 1999 Nature 399 761

    [15]

    Ardell D H, Andersen S O 2001 Insect Biochem. Mol. Biol. 31 965

    [16]

    Becker N, Oroudjev E, Mutz S, Cleveland J P, Hansma P K, Hayashi C Y, Makarov D E, Hansma H G 2003 Nat. Mater. 2 278

    [17]

    Elvin C M, Carr A G, Huson M G, Maxwell J M, Pearson R D, Vuocolo T, Liyou N E, Wong D C, Merritt D J, Dixon N E 2005 Nature 437 999

    [18]

    Lyons R E, Lesieur E, Kim M, Wong D C, Huson M G, Nairn K M, Brownlee A G, Pearson R D, Elvin C M 2007 Protein Eng. Des. Sel. 20 25

    [19]

    Heim M, Keerl D, Scheibel T 2009 Angew. Chem. Int. Ed. Engl. 48 3584

    [20]

    Wong J Y, McDonald J, Taylor-Pinney M, Spivak D I, Kaplan D L, Buehler M J 2012 Nano Today 7 488

    [21]

    Li H 2007 Org. Biomol. Chem. 5 3399

    [22]

    Li H 2008 Adv. Funct. Mater. 18 2643

    [23]

    Li H, Cao Y 2010 Acc. Chem. Res. 43 1331

    [24]

    Hoffmann T, Tych K M, Hughes M L, Brockwell D J, Dougan L 2013 Phys. Chem. Chem. Phys. 15 15767

    [25]

    Bell G I 1978 Science 200 618

    [26]

    Evans E, Ritchie K 1997 Biophys. J. 72 1541

    [27]

    Evans E, Ritchie K 1999 Biophys. J. 76 2439

    [28]

    Best R B, Li B, Steward A, Daggett V, Clarke J 2001 Biophys. J. 81 2344

    [29]

    Cao Y, Lam C, Wang M, Li H 2006 Angew. Chem. Int. Ed. Engl. 45 642

    [30]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [31]

    Brockwell D J, Beddard G S, Paci E, West D K, Olmsted P D, Smith D A, Radford S E 2005 Biophys. J. 89 506

    [32]

    Dietz H, Rief M 2004 Proc. Natl. Acad. Sci. USA 101 16192

    [33]

    Cao Y, Li H 2008 Nat. Nanotechnol. 3 512

    [34]

    Sharma D, Perisic O, Peng Q, Cao Y, Lam C, Lu H, Li H 2007 Proc. Natl. Acad. Sci. USA 104 9278

    [35]

    Balamurali M M, Sharma D, Chang A, Khor D, Chu R, Li H 2008 Protein Sci. 17 1815

    [36]

    Ng S P, Billings K S, Ohashi T, Allen M D, Best R B, Randles L G, Erickson H P, Clarke J 2007 Proc. Natl. Acad. Sci. USA 104 9633

    [37]

    Perez-Jimenez R, Garcia-Manyes S, Ainavarapu S R, Fernandez J M 2006 J. Biol. Chem. 281 40010

    [38]

    Peng Q, Li H 2008 Proc. Natl. Acad. Sci. USA 105 1885

    [39]

    Aggarwal V, Kulothungan S R, Balamurali M M, Saranya S R, Varadarajan R, Ainavarapu S R 2011 J. Biol. Chem. 286 28056

    [40]

    Puchner E M, Alexandrovich A, Kho A L, Hensen U, Schafer L V, Brandmeier B, Grater F, Grubmuller H, Gaub H E, Gautel M 2008 Proc. Natl. Acad. Sci. USA 105 13385

    [41]

    Pernigo S, Fukuzawa A, Bertz M, Holt M, Rief M, Steiner R A, Gautel M 2010 Proc. Natl. Acad. Sci. USA 107 2908

    [42]

    Cao Y, Yoo T, Li H 2008 Proc. Natl. Acad. Sci. USA 105 11152

    [43]

    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E 1999 Science 283 1727

    [44]

    Cao Y, Balamurali M M, Sharma D, Li H 2007 Proc. Natl. Acad. Sci. USA 104 15677

    [45]

    Cao Y, Li H 2008 J. Mol. Biol. 375 316

    [46]

    Brockwell D J, Paci E, Zinober R C, Beddard G S, Olmsted P D, Smith D A, Perham R N, Radford S E 2003 Nat. Struct. Biol. 10 731

    [47]

    Carrion-Vazquez M, Li H, Lu H, Marszalek P E, Oberhauser A F, Fernandez J M 2003 Nat. Struct. Biol. 10 738

    [48]

    Dietz H, Berkemeier F, Bertz M, Rief M 2006 Proc. Natl. Acad. Sci. USA 103 12724

    [49]

    Hinterdorfer P, Dufrene Y F 2006 Nat. Methods 3 347

    [50]

    Muller D J, Dufrene Y F 2008 Nat. Nanotechnol. 3 261

    [51]

    Hoffman T, Dougan L 2012 Chem. Soc. Rev. 41 4773

    [52]

    Sullan R M A, Churnside A B, Nguyen D M, Bull M S, Perkins T T 2013 Methods 60 131

    [53]

    Junker J P, Ziegler F, Rief M 2009 Science 323 633

    [54]

    Schlierf M, Berkemeier F, Rief M 2007 Biophys. J. 93 3989

    [55]

    Otten M, Ott W, Jobst M A, Milles L F, Verdorfer T, Pippig D A, Nash M A, Gaub H E 2014 Nat. Methods 11 1127

    [56]

    Baumann F, Heucke S F, Pippig D A, Gaub H E 2015 Rev. Sci. Instrum. 86 035109

    [57]

    Ando T, Uchihashi T, Fukuma T 2008 Prog. Surf. Sci. 83 337

    [58]

    Lee H, Scherer N F, Messersmith P B 2006 Proc. Natl. Acad. Sci. USA 103 12999

    [59]

    Li Y, Qin M, Li Y, Cao Y, Wang W 2014 Langmuir 30 4358

  • [1]

    Strong M 2004 PLoS Biol. 2 305

    [2]

    Berkemeier F, Bertz M, Xiao S, Pinotsis N, Wilmanns M, Grater F, Rief M 2011 Proc. Natl. Acad. Sci. USA 108 14139

    [3]

    Bullard B, Garcia T, Benes V, Leake M C, Linke W A, Oberhauser A F 2006 Proc. Natl. Acad. Sci. USA 103 4451

    [4]

    Scharnagl C, Reif M, Friedrich J 2005 Biochim. Biophys. Acta 1749 187

    [5]

    Neuman K C, Nagy A 2008 Nat. Methods 5 491

    [6]

    Rief M, Gautel M, Oesterhelt F, Fernandez J M, Gaub H E 1997 Science 276 1109

    [7]

    Oberhauser A F, Marszalek P E, Erickson H P, Fernandez J M 1998 Nature 393 181

    [8]

    Rief M, Gautel M, Schemmel A, Gaub H E 1998 Biophys. J. 75 3008

    [9]

    Rief M, Pascual J, Saraste M, Gaub H E 1999 J. Mol. Biol. 286 553

    [10]

    Rief M, Gautel M, Gaub H E 2000 Adv. Exp. Med. Biol. 481 129

    [11]

    Schwaiger I, Sattler C, Hostetter D R, Rief M 2002 Nat. Mater. 1 232

    [12]

    Urry D W, Parker T M 2002 J. Muscle Res. Cell Motil. 23 543

    [13]

    Guerette P A, Ginzinger D G, Weber B H, Gosline J M 1996 Science 272 112

    [14]

    Smith B L, Schaffer T E, Viani M, Thompson J B, Frederick N A, Kindt J, Belcher A, Stucky G D, Morse D E, Hansma P K 1999 Nature 399 761

    [15]

    Ardell D H, Andersen S O 2001 Insect Biochem. Mol. Biol. 31 965

    [16]

    Becker N, Oroudjev E, Mutz S, Cleveland J P, Hansma P K, Hayashi C Y, Makarov D E, Hansma H G 2003 Nat. Mater. 2 278

    [17]

    Elvin C M, Carr A G, Huson M G, Maxwell J M, Pearson R D, Vuocolo T, Liyou N E, Wong D C, Merritt D J, Dixon N E 2005 Nature 437 999

    [18]

    Lyons R E, Lesieur E, Kim M, Wong D C, Huson M G, Nairn K M, Brownlee A G, Pearson R D, Elvin C M 2007 Protein Eng. Des. Sel. 20 25

    [19]

    Heim M, Keerl D, Scheibel T 2009 Angew. Chem. Int. Ed. Engl. 48 3584

    [20]

    Wong J Y, McDonald J, Taylor-Pinney M, Spivak D I, Kaplan D L, Buehler M J 2012 Nano Today 7 488

    [21]

    Li H 2007 Org. Biomol. Chem. 5 3399

    [22]

    Li H 2008 Adv. Funct. Mater. 18 2643

    [23]

    Li H, Cao Y 2010 Acc. Chem. Res. 43 1331

    [24]

    Hoffmann T, Tych K M, Hughes M L, Brockwell D J, Dougan L 2013 Phys. Chem. Chem. Phys. 15 15767

    [25]

    Bell G I 1978 Science 200 618

    [26]

    Evans E, Ritchie K 1997 Biophys. J. 72 1541

    [27]

    Evans E, Ritchie K 1999 Biophys. J. 76 2439

    [28]

    Best R B, Li B, Steward A, Daggett V, Clarke J 2001 Biophys. J. 81 2344

    [29]

    Cao Y, Lam C, Wang M, Li H 2006 Angew. Chem. Int. Ed. Engl. 45 642

    [30]

    Cao Y, Li H 2007 Nat. Mater. 6 109

    [31]

    Brockwell D J, Beddard G S, Paci E, West D K, Olmsted P D, Smith D A, Radford S E 2005 Biophys. J. 89 506

    [32]

    Dietz H, Rief M 2004 Proc. Natl. Acad. Sci. USA 101 16192

    [33]

    Cao Y, Li H 2008 Nat. Nanotechnol. 3 512

    [34]

    Sharma D, Perisic O, Peng Q, Cao Y, Lam C, Lu H, Li H 2007 Proc. Natl. Acad. Sci. USA 104 9278

    [35]

    Balamurali M M, Sharma D, Chang A, Khor D, Chu R, Li H 2008 Protein Sci. 17 1815

    [36]

    Ng S P, Billings K S, Ohashi T, Allen M D, Best R B, Randles L G, Erickson H P, Clarke J 2007 Proc. Natl. Acad. Sci. USA 104 9633

    [37]

    Perez-Jimenez R, Garcia-Manyes S, Ainavarapu S R, Fernandez J M 2006 J. Biol. Chem. 281 40010

    [38]

    Peng Q, Li H 2008 Proc. Natl. Acad. Sci. USA 105 1885

    [39]

    Aggarwal V, Kulothungan S R, Balamurali M M, Saranya S R, Varadarajan R, Ainavarapu S R 2011 J. Biol. Chem. 286 28056

    [40]

    Puchner E M, Alexandrovich A, Kho A L, Hensen U, Schafer L V, Brandmeier B, Grater F, Grubmuller H, Gaub H E, Gautel M 2008 Proc. Natl. Acad. Sci. USA 105 13385

    [41]

    Pernigo S, Fukuzawa A, Bertz M, Holt M, Rief M, Steiner R A, Gautel M 2010 Proc. Natl. Acad. Sci. USA 107 2908

    [42]

    Cao Y, Yoo T, Li H 2008 Proc. Natl. Acad. Sci. USA 105 11152

    [43]

    Grandbois M, Beyer M, Rief M, Clausen-Schaumann H, Gaub H E 1999 Science 283 1727

    [44]

    Cao Y, Balamurali M M, Sharma D, Li H 2007 Proc. Natl. Acad. Sci. USA 104 15677

    [45]

    Cao Y, Li H 2008 J. Mol. Biol. 375 316

    [46]

    Brockwell D J, Paci E, Zinober R C, Beddard G S, Olmsted P D, Smith D A, Perham R N, Radford S E 2003 Nat. Struct. Biol. 10 731

    [47]

    Carrion-Vazquez M, Li H, Lu H, Marszalek P E, Oberhauser A F, Fernandez J M 2003 Nat. Struct. Biol. 10 738

    [48]

    Dietz H, Berkemeier F, Bertz M, Rief M 2006 Proc. Natl. Acad. Sci. USA 103 12724

    [49]

    Hinterdorfer P, Dufrene Y F 2006 Nat. Methods 3 347

    [50]

    Muller D J, Dufrene Y F 2008 Nat. Nanotechnol. 3 261

    [51]

    Hoffman T, Dougan L 2012 Chem. Soc. Rev. 41 4773

    [52]

    Sullan R M A, Churnside A B, Nguyen D M, Bull M S, Perkins T T 2013 Methods 60 131

    [53]

    Junker J P, Ziegler F, Rief M 2009 Science 323 633

    [54]

    Schlierf M, Berkemeier F, Rief M 2007 Biophys. J. 93 3989

    [55]

    Otten M, Ott W, Jobst M A, Milles L F, Verdorfer T, Pippig D A, Nash M A, Gaub H E 2014 Nat. Methods 11 1127

    [56]

    Baumann F, Heucke S F, Pippig D A, Gaub H E 2015 Rev. Sci. Instrum. 86 035109

    [57]

    Ando T, Uchihashi T, Fukuma T 2008 Prog. Surf. Sci. 83 337

    [58]

    Lee H, Scherer N F, Messersmith P B 2006 Proc. Natl. Acad. Sci. USA 103 12999

    [59]

    Li Y, Qin M, Li Y, Cao Y, Wang W 2014 Langmuir 30 4358

  • [1] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [2] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印. 物理学报, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [3] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [4] 滕翠娟, 陆越, 马建兵, 李明, 陆颖, 徐春华. 用单分子技术研究Sso7d与DNA的相互作用. 物理学报, 2018, 67(14): 148201. doi: 10.7498/aps.67.20180630
    [5] 李鹏飞, 曹毅, 秦猛, 王炜. 钙离子调控微丝切割蛋白中A6亚基解折叠的单分子力谱研究. 物理学报, 2017, 66(19): 196201. doi: 10.7498/aps.66.196201
    [6] 邓海游, 贾亚, 张阳. 蛋白质结构预测. 物理学报, 2016, 65(17): 178701. doi: 10.7498/aps.65.178701
    [7] 钱辉, 陈虎, 严洁. 软物质实验方法前沿:单分子操控技术. 物理学报, 2016, 65(18): 188706. doi: 10.7498/aps.65.188706
    [8] 曹博智, 林瑜, 王艳伟, 杨光参. 抗生物素蛋白与DNA相互作用的单分子研究. 物理学报, 2016, 65(14): 140701. doi: 10.7498/aps.65.140701
    [9] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [10] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [11] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 淀积在不同小倾角蓝宝石衬底的n型GaN的研究. 物理学报, 2009, 58(4): 2644-2648. doi: 10.7498/aps.58.2644
    [12] 张丽卿, 张崇宏, 杨义涛, 姚存峰, 孙友梅, 李炳生, 赵志明, 宋书建. 高电荷态离子126Xeq+引起GaN表面形貌变化研究. 物理学报, 2009, 58(8): 5578-5584. doi: 10.7498/aps.58.5578
    [13] 邢艳辉, 邓军, 韩军, 李建军, 沈光地. 引入n型InGaN/GaN超晶格层提高量子阱特性研究. 物理学报, 2009, 58(1): 590-595. doi: 10.7498/aps.58.590
    [14] 邢艳辉, 韩 军, 刘建平, 邓 军, 牛南辉, 沈光地. 垒掺In提高InGaN/GaN多量子阱发光特性. 物理学报, 2007, 56(12): 7295-7299. doi: 10.7498/aps.56.7295
    [15] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [16] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [18] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [19] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
    [20] 阎循领, 董瑞新, 王伯运, 胡海泉, 徐炳振. α螺旋蛋白质分子Raman光谱的选择定则. 物理学报, 1998, 47(12): 1963-1967. doi: 10.7498/aps.47.1963
计量
  • 文章访问数:  7895
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-30
  • 修回日期:  2016-08-18
  • 刊出日期:  2016-09-05

/

返回文章
返回