搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场下悬浮六方氮化硼摩擦特性的研究

陈星源 黄瑶 彭倚天

引用本文:
Citation:

电场下悬浮六方氮化硼摩擦特性的研究

陈星源, 黄瑶, 彭倚天

Tribological properties of suspended hexagonal boron nitride under electric field

Chen Xing-Yuan, Huang Yao, Peng Yi-Tian
PDF
HTML
导出引用
  • 六方氮化硼(hexagonal boron nitride, h-BN)因其良好的润滑性和绝缘性, 在微纳机电系统中有巨大的应用潜力. 本文通过基底刻蚀的工艺, 在SiO2/Si基底上制备了微孔阵列, 然后将h-BN转移到微孔基底上形成悬浮结构, 利用原子力显微镜研究电场对悬浮h-BN摩擦特性的影响. 结果表明: 悬浮状态的h-BN的表面摩擦力小于有基底支撑的h-BN的表面摩擦力, 原因是更大的面内拉伸削弱了褶皱效应. 电场作用下, 针尖与h-BN之间的静电相互作用增强, 悬浮h-BN表面的摩擦力随偏压的增大而增大, 且正偏压的影响大于负偏压的影响. 同时, 在电场下针尖在悬浮h-BN表面的黏滑行为出现单步黏滑向多步黏滑的转变. 此外, 与有基底支撑的h-BN相比, 悬浮状态的h-BN受电场的影响更大, 这是由于针尖与基底界面距离的缩小以及基底氧化层的缺失导致静电力增强. 本文提出了通过施加外电场来调节悬浮h-BN表面摩擦的方法, 对研究二维材料摩擦特性提供了一定的理论指导.
    Hexagonal boron nitride (h-BN) has huge potential applications in micro-nano electromechanical system due to its good lubricity and insulation. In this paper, a microporous array is prepared on a SiO2/Si substrate by the substrate etching process, and then the h-BN is transferred to the microporous substrate to form a suspension structure. The effect of electric field on tribological properties of suspended h-BN is studied by atomic force microscopy. The results show that the friction of the suspended h-BN is smaller than the friction on the h-BN supported by the substrate, because the greater in-plane stretch weakens the puckering effect. The electric field increases the friction of the suspended h-BN, and the influence of positive bias is greater than that of negative bias. The application of the electric field increases the electrostatic force on the tip, thereby increasing the additional load and the interface barrier in the friction process. The electric field causes the stick-slip behavior to change from single-slip to multi-slip. Compared with the h-BN supported by the substrate, h-BN in the suspended state is strongly affected by the electric field. The reduction of the interface distance and the absence of the substrate oxide layer lead the electrostatic force to increase. This paper proposes a method to adjust h-BN’s friction by electric field, which provides theoretical guidance for studying the friction characteristics of two-dimensional materials.
      通信作者: 黄瑶, huanghuang36@dhu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51905089)和中央高校基本科研业务费专项资金(批准号: 2232020D-31)资助的课题
      Corresponding author: Huang Yao, huanghuang36@dhu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51905089) and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. 2232020D-31)
    [1]

    郑泉水, 欧阳稳根, 马明, 张首沫, 赵治华, 董华来, 林立 2016 科技导报 34 12

    Zheng Q S, Ouyang W G, Ma M, Zhang S M, Zhao Z H, Dong H L, Lin L 2016 Sci. Technol. Rev. 34 12

    [2]

    Zhang S, Ma T B, Erdemir A, Li Q Y 2019 Mater. Today 26 67Google Scholar

    [3]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301Google Scholar

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu X C, Hwang E H, Yoo W J, Lee S, Cheong B K 2015 Solid State Commun. 209 1

    [6]

    Mirkarimi P B, McCarty K F, Medlin D L 1997 Mater. Sci. Eng. R Rep. 21 47Google Scholar

    [7]

    Martin J M, Mogne T L, Chassagnette C, Gardos M N 1992 Tribol. Trans. 35 462Google Scholar

    [8]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [9]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [10]

    Zeng X Z, Peng Y T, Yu M C, Lang H J, Cao X A, Zou K 2018 ACS Appl. Mater. Interfaces 10 8214Google Scholar

    [11]

    Jiang Y, Yue L L, Yan B S, Liu X, Yang X F, Tai G A, Song J 2015 Nano 10 1550038Google Scholar

    [12]

    Lang H J, Peng Y T, Shao G W, Zou K, Tao G M 2019 J. Mater. Chem. C 7 6041Google Scholar

    [13]

    Wagner K, Cheng P, Vezenov D 2011 Langmuir 27 4635Google Scholar

    [14]

    Nemes-Incze P, Osváth Z, Kamarás K, Biró L P 2008 Carbon 46 1435Google Scholar

    [15]

    Elinski M B, Menard B D, Liu Z, Batteas J D 2017 J. Phys. Chem. C 121 5635

    [16]

    Fang L, Liu D M, Guo Y Z, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

    [17]

    Smolyanitsky A, Killgore J P, Tewary V K 2012 Phys. Rev. B 85 035412Google Scholar

    [18]

    Li H, Zeng X C 2012 ACS Nano 6 2401Google Scholar

    [19]

    Kostoglou N, Polychronopoulou K, Rebholz C 2015 Vacuum 112 42Google Scholar

    [20]

    Jean M S, Hudlet S, Guthmann C, Berger J 1999 Eur. Phys. J. B. 12 471Google Scholar

    [21]

    Qi Y B, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M 2008 Phys. Rev. B 77 184105Google Scholar

    [22]

    Law B M, Rieutord F 2002 Phys. Rev. B 66 035402Google Scholar

    [23]

    Lang H J, Peng Y T, Cao X A, Zou K 2020 ACS Appl. Mater. Interfaces 12 25503Google Scholar

    [24]

    Medyanik S N, Liu W K, Sung I H, Carpick R W 2006 Phys. Rev. Lett. 97 136106Google Scholar

  • 图 1  制备微孔阵列硅片的设备及试样 (a) 紫外深度光刻机; (b) 微孔阵列硅片的光学图

    Fig. 1.  Equipment for preparing micro-hole array silicon wafer and sample: (a) Ultraviolet depth lithography machine; (b) optical image of micro-hole array silicon wafer.

    图 2  样品的光学图和形貌图 (a) 微孔基底上h-BN的光学图; (b) 微孔基底上h-BN的AFM形貌图, 插图为h-BN的高度轮廓图

    Fig. 2.  Optical image and topography of the sample: (a) Optical image of h-BN on microporous substrate; (b) AFM topography of h-BN on microporous substrate, the illustration shows the height profile of h-BN.

    图 3  微孔和悬浮h-BN的形貌及高度轮廓图 (a) 微孔的AFM形貌图; (b) 微孔的高度轮廓图; (c) 悬浮h-BN的AFM形貌图; (d) 悬浮h-BN的高度轮廓图

    Fig. 3.  Topography and height profile of microporous and suspended h-BN: (a) AFM topography of micropores; (b) height profile of micropores; (c) AFM topography of suspended h-BN; (d) height profile of suspended h-BN.

    图 4  h-BN在悬浮和支撑状态下的摩擦和黏附对比 (a) 悬浮状态和支撑状态的h-BN的摩擦力-载荷关系; (b) 悬浮状态和支撑状态的h-BN的黏附力图

    Fig. 4.  Comparison of friction and adhesion on h-BN in suspended and supported state: (a) Friction-load relationship of suspended and supported h-BN; (b) adhesion on suspended and supported h-BN.

    图 5  不同电场下悬浮h-BN的摩擦力-载荷关系的对比 (a) 不同正偏压下悬浮h-BN的摩擦力-载荷关系; (b) 不同负偏压下悬浮h-BN的摩擦力-载荷关系

    Fig. 5.  Comparison of friction-load relationship of suspended h-BN under different electric fields: (a) Friction-load relationship of suspended h-BN under different positive biases; (b) friction-load relationship of suspended h-BN under different negative biases.

    图 6  不同电场下悬浮h-BN的黏附力对比 (a) 不同正偏压下悬浮h-BN表面的黏附力; (b) 不同负偏压下悬浮h-BN表面的黏附力

    Fig. 6.  Comparison of adhesions on suspended h-BN under different electric fields: (a) Adhesions on suspended h-BN under different positive biases; (b) Adhesions on suspended h-BN under different negative biases.

    图 7  悬浮h-BN的黏滑运动在电场下的变化 (a) 无电场时悬浮h-BN的侧向力曲线; (b) +5 V偏压下悬浮h-BN的侧向力曲线

    Fig. 7.  Variation of stick-slip behavior of suspended h-BN under electric field: (a) Lateral force curves measured on suspended h-BN without bias; (b) lateral force curves measured on suspended h-BN under +5 V bias.

    图 8  电场下支撑与悬浮状态的h-BN的摩擦力对比 (a) 电场下有基底支撑的h-BN的摩擦力图; (b) 不同偏压下有基底支撑的h-BN的摩擦力柱状图; (c) 电场下悬浮h-BN的摩擦力图; (d) 不同偏压下悬浮h-BN的摩擦力柱状图

    Fig. 8.  Comparison of the friction on the supported and suspended h-BN under electric fields: (a) Friction on supported h-BN under biases; (b) histogram of the friction on supported h-BN under different biases; (c) friction on suspended h-BN under biases; (d) histogram of the friction on suspended h-BN under different biases.

    图 9  电场下支撑与悬浮状态的h-BN示意图对比 (a) 电场下有基底支撑的h-BN的示意图; (b)电场下悬浮h-BN的示意图

    Fig. 9.  Comparison of schematic diagram of h-BN in supported and suspended state under electric field: (a) Schematic diagram of supported h-BN under electric field; (b) schematic diagram of suspended h-BN under electric field.

  • [1]

    郑泉水, 欧阳稳根, 马明, 张首沫, 赵治华, 董华来, 林立 2016 科技导报 34 12

    Zheng Q S, Ouyang W G, Ma M, Zhang S M, Zhao Z H, Dong H L, Lin L 2016 Sci. Technol. Rev. 34 12

    [2]

    Zhang S, Ma T B, Erdemir A, Li Q Y 2019 Mater. Today 26 67Google Scholar

    [3]

    Spear J C, Ewers B W, Batteas J D 2015 Nano Today 10 301Google Scholar

    [4]

    Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L 2010 Nat. Nanotechnol. 5 722Google Scholar

    [5]

    Liu X C, Hwang E H, Yoo W J, Lee S, Cheong B K 2015 Solid State Commun. 209 1

    [6]

    Mirkarimi P B, McCarty K F, Medlin D L 1997 Mater. Sci. Eng. R Rep. 21 47Google Scholar

    [7]

    Martin J M, Mogne T L, Chassagnette C, Gardos M N 1992 Tribol. Trans. 35 462Google Scholar

    [8]

    Watanabe K, Taniguchi T, Kanda H 2004 Nat. Mater. 3 404Google Scholar

    [9]

    Lee C G, Li Q Y, Kalb W, Liu X Z, Berger H, Carpick R W, Hone J 2010 Science 328 76Google Scholar

    [10]

    Zeng X Z, Peng Y T, Yu M C, Lang H J, Cao X A, Zou K 2018 ACS Appl. Mater. Interfaces 10 8214Google Scholar

    [11]

    Jiang Y, Yue L L, Yan B S, Liu X, Yang X F, Tai G A, Song J 2015 Nano 10 1550038Google Scholar

    [12]

    Lang H J, Peng Y T, Shao G W, Zou K, Tao G M 2019 J. Mater. Chem. C 7 6041Google Scholar

    [13]

    Wagner K, Cheng P, Vezenov D 2011 Langmuir 27 4635Google Scholar

    [14]

    Nemes-Incze P, Osváth Z, Kamarás K, Biró L P 2008 Carbon 46 1435Google Scholar

    [15]

    Elinski M B, Menard B D, Liu Z, Batteas J D 2017 J. Phys. Chem. C 121 5635

    [16]

    Fang L, Liu D M, Guo Y Z, Liao Z M, Luo J B, Wen S Z 2017 Nanotechnology 28 245703Google Scholar

    [17]

    Smolyanitsky A, Killgore J P, Tewary V K 2012 Phys. Rev. B 85 035412Google Scholar

    [18]

    Li H, Zeng X C 2012 ACS Nano 6 2401Google Scholar

    [19]

    Kostoglou N, Polychronopoulou K, Rebholz C 2015 Vacuum 112 42Google Scholar

    [20]

    Jean M S, Hudlet S, Guthmann C, Berger J 1999 Eur. Phys. J. B. 12 471Google Scholar

    [21]

    Qi Y B, Park J Y, Hendriksen B L M, Ogletree D F, Salmeron M 2008 Phys. Rev. B 77 184105Google Scholar

    [22]

    Law B M, Rieutord F 2002 Phys. Rev. B 66 035402Google Scholar

    [23]

    Lang H J, Peng Y T, Cao X A, Zou K 2020 ACS Appl. Mater. Interfaces 12 25503Google Scholar

    [24]

    Medyanik S N, Liu W K, Sung I H, Carpick R W 2006 Phys. Rev. Lett. 97 136106Google Scholar

  • [1] 孟菁饴, 卢红伟, 马世乐, 张嘉奇, 何富民, 苏伟涛, 赵晓东, 田婷, 王翼, 邢誉. 功能化原子力显微镜在纳米电介质材料性能研究中的应用进展. 物理学报, 2022, 71(24): 240701. doi: 10.7498/aps.71.20221462
    [2] 俞奕飞, 曹毅. 从蘸笔纳米刻印术到力化学打印. 物理学报, 2021, 70(2): 024202. doi: 10.7498/aps.70.20201537
    [3] 李亮亮, 孟凡伟, 邹鲲, 黄瑶, 彭倚天. 悬浮石墨烯摩擦特性. 物理学报, 2021, 70(8): 086801. doi: 10.7498/aps.70.20201796
    [4] 温焕飞, 菅原康弘, 李艳君. 二氧化钛亚表面电荷对其表面点缺陷和吸附原子分布的影响. 物理学报, 2020, 69(21): 210701. doi: 10.7498/aps.69.20200773
    [5] 邓剑锋, 李慧琴, 于帆, 梁齐. 机械剥离折叠石墨烯粘附与纳米摩擦性质. 物理学报, 2020, 69(7): 076802. doi: 10.7498/aps.69.20191825
    [6] 周浩天, 高翔, 郑鹏, 秦猛, 曹毅, 王炜. 弹性蛋白力学特性的单分子力谱. 物理学报, 2016, 65(18): 188703. doi: 10.7498/aps.65.188703
    [7] 王维, 杨兰均, 刘帅, 黄易之, 黄东, 吴锴. 线-铝箔电极电晕放电激励器的推力理论与实验研究. 物理学报, 2015, 64(10): 105204. doi: 10.7498/aps.64.105204
    [8] 刘式达, 付遵涛, 刘式适. 从北极高压、南极低压到南北极间的三维异宿轨道. 物理学报, 2014, 63(21): 214701. doi: 10.7498/aps.63.214701
    [9] 孙志, 王暄, 韩柏, 宋伟, 张冬, 郭翔宇, 雷清泉. 静电力显微镜研究二相材料及其界面介电特性. 物理学报, 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [10] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [11] 蒋国平, 郝洪, 曾春航, 郝逸飞, 吴如军, 刘纪超. 冲击作用下的摩擦力效应实验研究. 物理学报, 2013, 62(11): 116203. doi: 10.7498/aps.62.116203
    [12] 季超, 张凌云, 窦硕星, 王鹏业. 原子力显微镜观测生物大分子图像的一种处理方法. 物理学报, 2011, 60(9): 098703. doi: 10.7498/aps.60.098703
    [13] 王亚珍, 黄平, 龚中良. 温度对微界面摩擦影响的研究. 物理学报, 2010, 59(8): 5635-5640. doi: 10.7498/aps.59.5635
    [14] 丁凌云, 龚中良, 黄 平. 基于耦合振子模型的摩擦力计算研究. 物理学报, 2008, 57(10): 6500-6506. doi: 10.7498/aps.57.6500
    [15] 樊康旗, 贾建援, 朱应敏, 刘小院. 原子力显微镜在轻敲模式下的动力学模型. 物理学报, 2007, 56(11): 6345-6351. doi: 10.7498/aps.56.6345
    [16] 胡海龙, 张 琨, 王振兴, 王晓平. 自组装硫醇分子膜电输运特性的导电原子力显微镜研究. 物理学报, 2006, 55(3): 1430-1434. doi: 10.7498/aps.55.1430
    [17] 欧谷平, 宋 珍, 桂文明, 张福甲. 原子力显微镜与x射线光电子能谱对LiBq4/ITO和LiBq4/CuPc/ITO的表面分析. 物理学报, 2005, 54(12): 5717-5722. doi: 10.7498/aps.54.5717
    [18] 张向军, 孟永钢, 温诗铸. 原子力显微镜探针耦合变形下的微观扫描力研究. 物理学报, 2004, 53(3): 728-733. doi: 10.7498/aps.53.728
    [19] 胡 林, 杨 平, 徐 亭, 江 阳, 须海江, 龙 为, 杨昌顺, 张 弢, 陆坤权. 颗粒物质中圆棒受到的静摩擦力. 物理学报, 2003, 52(4): 879-882. doi: 10.7498/aps.52.879
    [20] 孙润广, 齐浩, 张静. 脂质体结构特性的原子力显微镜研究. 物理学报, 2002, 51(6): 1203-1207. doi: 10.7498/aps.51.1203
计量
  • 文章访问数:  4968
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-28
  • 修回日期:  2021-04-15
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回