搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线-铝箔电极电晕放电激励器的推力理论与实验研究

王维 杨兰均 刘帅 黄易之 黄东 吴锴

引用本文:
Citation:

线-铝箔电极电晕放电激励器的推力理论与实验研究

王维, 杨兰均, 刘帅, 黄易之, 黄东, 吴锴

Theoretical and experimental study of thrust produced by corona discharge exciter in wire-aluminum foil electrode configration

Wang Wei, Yang Lan-Jun, Liu Shuai, Huang Yi-Zhi, Huang Dong, Wu Kai
PDF
导出引用
  • 空气电晕放电离子风激励器无需旋转部件, 仅通过消耗电能就能直接产生驱动力, 它是一种新型的动力技术, 备受国内外航空航天界的广泛关注. 目前对空气电晕放电离子风激励器的推力产生机理虽有各种解释, 但是现有理论均不能统一各种条件下的实验结果, 仍需要开展进一步的分析与研究. 本文以线-铝箔电极电晕放电激励器为研究对象, 通过实验研究发现作用在线电极与铝箔电极上的静电力不对称, 而且改变铝箔电极纵向高度和气压均能影响激励器的推力大小; 通过理论分析, 考虑电晕层与空间电荷的影响, 建立了线-铝箔电极电晕放电激励器的推力计算模型, 其计算值与实测值比较一致. 基于上述实验现象与理论建模分析, 本文认为线-铝箔电极电晕放电激励器的推力主要来源于线电极电晕产生的空间电荷对电极系统产生了不对称静电力作用, 使激励器出现净静电力作用.
    Air corona discharge ionic wind exciter can generate driving force without any rotating component, which makes it commonly used in aviation and aerospace field. Although there are many explanations of the thrust generating mechanism of the air corona discharge ionic wind exciter, no existing theories can unify the experiment results obtained under various conditions. A further study is still needed. The paper focuses on the characteristics of wire-aluminum foil exciter. The experiments show that the electrostatic force acting on the wire-aluminum foil is asymmetric and the variations of the height in lengthways aluminum foil and the air pressure can change the electrostatic force. Meanwhile, with the theoretical analysis the calculation model of the force of the wire-aluminum foil exciter’s corona discharge is established by taking the influences of corona layer and space charge into consideration. The calculation fits the measured value. By combining with the theoretical analysis, the thrust of wire-aluminum foil electrode corona discharge exciter is proved to come from the space charge produced by wire electrode corona discharge, which exerts an asymmetric electrostatic force on the electrode system and generates a net electrostatic force for the exciter.
    • 基金项目: 国家自然科学基金(批准号: 51377132)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51377132).
    [1]

    Metwally I A 1996 IEEE Trans. Dielectr. Electr. Insulat. 3 544

    [2]

    Li X C, Niu D Y, Xu L F, Jia P Y, Chang Y Y 2012 Chin. Phys. B 21 075204

    [3]

    Feng S, He F, Oyang J T 2007 Chin. Phys. Lett. 24 2304

    [4]

    Zhang G Q, Ge Y J, Zhang Y F, Chen G L 2004 Chin. Phys. Lett. 21 2238

    [5]

    Yu Z, Zhang Z T, Yu Q X, Xu S J, Yao J, Bai M D, Tian Y P, Liu K Y 2012 Acta Phys. Sin. 61 195202 (in Chinese) [俞哲, 张芝涛, 于清旋, 许少杰, 姚京, 白敏冬, 田一平, 刘开颖 2012 物理学报 61 195202]

    [6]

    Wei H L, Liu Z L, Li Z G, Zheng Q G 1996 Chin. Phys. 15 520

    [7]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [8]

    Li S, Ouyang J T, He F 2010 Chin. Phys. Lett. 27 065201

    [9]

    Chen G L, Fan S H, Li C L 2005 Chin. Phys. Lett. 22 1980

    [10]

    Musha T 2000 Electric Space Craft J. 31 21

    [11]

    Zhao L, Adamiak K 2006 J.Electrostat. 64 639

    [12]

    Canning F X, Melcher C, Winet E 2004 Asymmetrical Capacitors for Propulsion, NASA/CR-2004-213312, 2004

    [13]

    Yost C A 2002 Electr. Spacecraft J. 33 22

    [14]

    Ma C, Lu R D, Ye B J 2013 J. Electrostat. 71 134

    [15]

    Tajmar M 2004 AIAA 42 315

    [16]

    Wilson J, Perkins H D, Thompson W K 2009 An Investigation of Ionic Wind Propulsion, Technical Report NASA/TM-2009-215822, National Aeronautics and Space Administration, Washington, DC

    [17]

    Zhao L, Liaw T M 2011 Industry Applications Society Annual Meeting (IAS) IEEE Orlando FL, USA, October 9-13, 2011 p9

    [18]

    Koziell L, Zhao L, Liaw J, Adamiak K 2011 Proc. ESA Annual Meeting on Electrostatics Cleveland OH, USA, June 14-16, 2011 p1

    [19]

    Wang W, Yang L J, Gao J, Liu S 2013 Acta Phys. Sin. 62 075205 (in Chinese) [王维, 杨兰均, 高洁, 刘帅 2013 物理学报 62 075205]

    [20]

    Moreau E, Leger L, Touchard G 2006 J. Electrostat. 64 215

    [21]

    Takeuchi N, Yasuoka K 2009 IEEE Trans. Plasma Sci. 37 1021

    [22]

    Qiu W, Xia L Z, Yang L J, Zhang Q G, Xiao L, Chen L 2011 Plasma Sci. Technol. 13 693

    [23]

    Zhao L, Adamiak K 2006 J. Electrostat. 64 639

    [24]

    Cooperman P 1960 AIEE Trans. 79 47

  • [1]

    Metwally I A 1996 IEEE Trans. Dielectr. Electr. Insulat. 3 544

    [2]

    Li X C, Niu D Y, Xu L F, Jia P Y, Chang Y Y 2012 Chin. Phys. B 21 075204

    [3]

    Feng S, He F, Oyang J T 2007 Chin. Phys. Lett. 24 2304

    [4]

    Zhang G Q, Ge Y J, Zhang Y F, Chen G L 2004 Chin. Phys. Lett. 21 2238

    [5]

    Yu Z, Zhang Z T, Yu Q X, Xu S J, Yao J, Bai M D, Tian Y P, Liu K Y 2012 Acta Phys. Sin. 61 195202 (in Chinese) [俞哲, 张芝涛, 于清旋, 许少杰, 姚京, 白敏冬, 田一平, 刘开颖 2012 物理学报 61 195202]

    [6]

    Wei H L, Liu Z L, Li Z G, Zheng Q G 1996 Chin. Phys. 15 520

    [7]

    Liu X H, He W, Yang F, Wang H Y, Liao R J, Xiao H G 2012 Chin. Phys. B 21 075201

    [8]

    Li S, Ouyang J T, He F 2010 Chin. Phys. Lett. 27 065201

    [9]

    Chen G L, Fan S H, Li C L 2005 Chin. Phys. Lett. 22 1980

    [10]

    Musha T 2000 Electric Space Craft J. 31 21

    [11]

    Zhao L, Adamiak K 2006 J.Electrostat. 64 639

    [12]

    Canning F X, Melcher C, Winet E 2004 Asymmetrical Capacitors for Propulsion, NASA/CR-2004-213312, 2004

    [13]

    Yost C A 2002 Electr. Spacecraft J. 33 22

    [14]

    Ma C, Lu R D, Ye B J 2013 J. Electrostat. 71 134

    [15]

    Tajmar M 2004 AIAA 42 315

    [16]

    Wilson J, Perkins H D, Thompson W K 2009 An Investigation of Ionic Wind Propulsion, Technical Report NASA/TM-2009-215822, National Aeronautics and Space Administration, Washington, DC

    [17]

    Zhao L, Liaw T M 2011 Industry Applications Society Annual Meeting (IAS) IEEE Orlando FL, USA, October 9-13, 2011 p9

    [18]

    Koziell L, Zhao L, Liaw J, Adamiak K 2011 Proc. ESA Annual Meeting on Electrostatics Cleveland OH, USA, June 14-16, 2011 p1

    [19]

    Wang W, Yang L J, Gao J, Liu S 2013 Acta Phys. Sin. 62 075205 (in Chinese) [王维, 杨兰均, 高洁, 刘帅 2013 物理学报 62 075205]

    [20]

    Moreau E, Leger L, Touchard G 2006 J. Electrostat. 64 215

    [21]

    Takeuchi N, Yasuoka K 2009 IEEE Trans. Plasma Sci. 37 1021

    [22]

    Qiu W, Xia L Z, Yang L J, Zhang Q G, Xiao L, Chen L 2011 Plasma Sci. Technol. 13 693

    [23]

    Zhao L, Adamiak K 2006 J. Electrostat. 64 639

    [24]

    Cooperman P 1960 AIEE Trans. 79 47

  • [1] 宋健, 李嘉雯, 白晓东, 张津硕, 闫慧杰, 肖青梅, 王德真. 外电极长度对同轴枪放电等离子体特性的影响. 物理学报, 2021, 70(10): 105201. doi: 10.7498/aps.70.20201724
    [2] 陈星源, 黄瑶, 彭倚天. 电场下悬浮六方氮化硼摩擦特性的研究. 物理学报, 2021, 70(16): 166801. doi: 10.7498/aps.70.20210386
    [3] 孔得霖, 杨冰彦, 何锋, 韩若愚, 缪劲松, 宋廷鲁, 欧阳吉庭. 大气压电晕等离子体射流制备氧化钛薄膜. 物理学报, 2021, 70(9): 095205. doi: 10.7498/aps.70.20202181
    [4] 柴钰, 张妮, 刘杰, 殷宁, 刘树林, 张晶园. 微尺度下N2–O2电晕放电的动态特性二维仿真. 物理学报, 2020, 69(16): 165202. doi: 10.7498/aps.69.20200095
    [5] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究. 物理学报, 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [6] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点. 物理学报, 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [7] 司马文霞, 范硕超, 杨庆, 王琦. 雷云电场作用下长地线表面正极性辉光电晕放电的仿真研究. 物理学报, 2015, 64(10): 105205. doi: 10.7498/aps.64.105205
    [8] 李世松, 张钟华, 赵伟, 黄松岭, 傅壮. 一种用保角变换求解带电Kelvin电容器边缘效应所产生静电力的解析模型. 物理学报, 2015, 64(6): 060601. doi: 10.7498/aps.64.060601
    [9] 谢会乔, 谭熠, 刘阳青, 王文浩, 高喆. 中国联合球形托卡马克氦放电等离子体的碰撞辐射模型及其在谱线比法诊断的应用. 物理学报, 2014, 63(12): 125203. doi: 10.7498/aps.63.125203
    [10] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究. 物理学报, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [11] 刘雷, 李永东, 王瑞, 崔万照, 刘纯亮. 微波阶梯阻抗变换器低气压电晕放电粒子模拟. 物理学报, 2013, 62(2): 025201. doi: 10.7498/aps.62.025201
    [12] 孙志, 王暄, 韩柏, 宋伟, 张冬, 郭翔宇, 雷清泉. 静电力显微镜研究二相材料及其界面介电特性. 物理学报, 2013, 62(3): 030703. doi: 10.7498/aps.62.030703
    [13] 伍飞飞, 廖瑞金, 杨丽君, 刘兴华, 汪可, 周之. 棒-板电极直流负电晕放电特里切尔脉冲的微观过程分析. 物理学报, 2013, 62(11): 115201. doi: 10.7498/aps.62.115201
    [14] 王维, 杨兰均, 高洁, 刘帅. 多针-网电极离子风激励器推力与推功比的实验研究. 物理学报, 2013, 62(7): 075205. doi: 10.7498/aps.62.075205
    [15] 廖瑞金, 伍飞飞, 刘兴华, 杨帆, 杨丽君, 周之, 翟蕾. 大气压直流正电晕放电暂态空间电荷分布仿真研究. 物理学报, 2012, 61(24): 245201. doi: 10.7498/aps.61.245201
    [16] 翟晓东, 丁艳军, 彭志敏, 罗锐. N2第二正带系发射光谱的理论计算及实验研究. 物理学报, 2012, 61(12): 123301. doi: 10.7498/aps.61.123301
    [17] 万健如, 刘英培, 周海亮. 基于传输线理论电力高频脉冲在电缆上的传输与反射研究. 物理学报, 2010, 59(5): 2948-2951. doi: 10.7498/aps.59.2948
    [18] 江南, 曹则贤. 一种大气压放电氦等离子体射流的实验研究. 物理学报, 2010, 59(5): 3324-3330. doi: 10.7498/aps.59.3324
    [19] 李 钢, 徐燕骥, 穆克进, 聂超群, 朱俊强, 张 翼, 李汉明. 平面激光诱导荧光技术在交错电极介质阻挡放电等离子体研究中的初步应用. 物理学报, 2008, 57(10): 6444-6449. doi: 10.7498/aps.57.6444
    [20] 齐 冰, 任春生, 马腾才, 王友年, 王德真. 多针电晕增强大气压辉光放电稳定性研究. 物理学报, 2006, 55(1): 331-336. doi: 10.7498/aps.55.331
计量
  • 文章访问数:  3229
  • PDF下载量:  678
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-29
  • 修回日期:  2014-11-01
  • 刊出日期:  2015-05-05

线-铝箔电极电晕放电激励器的推力理论与实验研究

  • 1. 西安交通大学, 电力设备电气绝缘国家重点实验室, 西安 710049
    基金项目: 国家自然科学基金(批准号: 51377132)资助的课题.

摘要: 空气电晕放电离子风激励器无需旋转部件, 仅通过消耗电能就能直接产生驱动力, 它是一种新型的动力技术, 备受国内外航空航天界的广泛关注. 目前对空气电晕放电离子风激励器的推力产生机理虽有各种解释, 但是现有理论均不能统一各种条件下的实验结果, 仍需要开展进一步的分析与研究. 本文以线-铝箔电极电晕放电激励器为研究对象, 通过实验研究发现作用在线电极与铝箔电极上的静电力不对称, 而且改变铝箔电极纵向高度和气压均能影响激励器的推力大小; 通过理论分析, 考虑电晕层与空间电荷的影响, 建立了线-铝箔电极电晕放电激励器的推力计算模型, 其计算值与实测值比较一致. 基于上述实验现象与理论建模分析, 本文认为线-铝箔电极电晕放电激励器的推力主要来源于线电极电晕产生的空间电荷对电极系统产生了不对称静电力作用, 使激励器出现净静电力作用.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回