搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低能质子环束流与等离子体相互作用过程的一维混合模拟研究

金远伟 王娅冰 顾斌 赵蕾 张效信

引用本文:
Citation:

低能质子环束流与等离子体相互作用过程的一维混合模拟研究

金远伟, 王娅冰, 顾斌, 赵蕾, 张效信

Interaction between low energy proton ring-beam and plasma with one-dimentional hybrid simulations

Jin Yuan-Wei, Wang Ya-Bing, Gu Bin, Zhao Lei, Zhang Xiao-Xin
PDF
导出引用
  • 运用一维混合模拟方法, 研究了垂直于等离子体磁场入射的低能质子环束流与等离子体的相互作用过程. 结果显示: 由质子环束流激发的等离子体波首先经历指数式快速增长的线性阶段, 随后出现饱和、衰减和相对稳定的非线性阶段. 在线性阶段, 质子束投掷角散射使波模共振作用迅速减弱, 波的增长很快出现饱和. 随后, 持续的投掷角散射, 使入射质子在速度空间从环状分布渐变为均匀分布, 同时初始阶段的右手共振不稳定性逐渐消失, 在最后相对稳定阶段只存在阿尔芬波. 研究发现, 背景等离子体的有效加热始于非线性阶段, 等离子体波的形成有助于将质子束动能转换为背景等离子体的热能.
    In this paper, the interaction between the low energy proton ring-beam with an initial velocity perpendicular to the background magnetic field, and the background plasma is studied by one-dimensional (1D) hybrid simulations. In the initial stage, the excited plasma waves experience a fast growth exponentially, which is consistent with the linear theory. After that, three non-linear stages, including the saturation process, the fast damping process and the relatively stable stage, follow in sequence. In the linear stage, the mode-resonance damps with the pitch angle scattering of the injected protons, and the plasma oscillation reaches the peak quickly. The continuing pitch angle scattering makes the velocity distributions of the proton beam and the background ions uniformly distributed. Meanwhile, the initially excited right-handed resonant instability decreased, with only the Alfven waves left in the stable stage. The results also show that the effective heating of the background plasma is achieved after the linear stage, instead from the very beginning of the injection of the protons. This demonstrates that the excited plasma waves lead to the energy transferring from the injected proton beams to the background plasma.
    • 基金项目: 国家自然科学基金(批准号: 11105075, 41274147)、江苏省高校青蓝工程(2012), 江苏省公派留学基金(批准号: JS2012-105)和江苏省普通高校研究生科研创新计划项目(批准号: CXZZ12-0509)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11105075, 41274147), the Qinlan Project of Jiangsu Province (2012), the Jiangsu Government Scholarship for Overseas Studies, China (Grant No. JS2012-105) and the Graduate Student Innovation Project of Jiangsu Province, China (Grant No. CXZZ12-0509).
    [1]

    Wu C S, Davidson R C 1972 J. Geophys. Res. 77 5399

    [2]

    Akimoto k, Winske D, Gary S P, Thomsen M F 1993 J. Geophys. Res. 98 1419

    [3]

    Winske D, Gary S P 1986 J. Geophys. Res. 91 6825

    [4]

    Winske D, Wu C S, Li Y Y, Zhou G C 1984 J. Geophys. Res. 89 7327

    [5]

    Winske D, Wu C S, Li Y Y, Mou Z Z, Guo S Y 1985 J. Geophys. Res. 90 2713

    [6]

    Blum P W, Fahr H J 1970 Astro. Astrophys. 4 280

    [7]

    Holzer T E 1972 Astro. Astrophys. 77 5407

    [8]

    Wu C S, Winske D, Gaffey J D 1986 Geophy. Res. Lett. 13 865

    [9]

    Gary S P, Hinata S, Madland C D, Winske D 1986 Geophy. Res. Lett. 13 1364

    [10]

    Zhou G C, Li Y, Cao J B, Wang X Y 1998 Chin. Phys. Lett. 15 895

    [11]

    Wang X Y, Wu C S, Wang S, Chao J K, Lin Y, Yoon P H 2001 Astrophys. J. 547 1159

    [12]

    Eastman T E, Anderson R R, Frank L A, Parks G K 1981 J. Geophys. Res. 86 4379

    [13]

    Gurgiolo C, Parks G K, Mauk B H, Lin C S, Anderson K A, Lin R P, Reme H 1981 J. Geophys. Res. 86 4415

    [14]

    Cairns I H 1990 J. Geophys. Res. 95 15167

    [15]

    Coates A J, Johnstone A D, Wilken B, Neubauer F M 1993 J. Geophys. Res. 98 20985

    [16]

    Hardy D A, Hastings D E, Rivas D R, Burke W J, Cooke D L, Gentile L C 1996 J. Geophys. Res. 101 19629

    [17]

    McComas D J, Dayeh M A, Allegrini F, Bzowski M 2012 Astrophys. J. Suppl. S 203 1

    [18]

    McComas D J, Lewis W S, Schwadron N A 2014 Rev. Geophys. 52 118

    [19]

    McComas D J, Allegrini F, Bochsler P, Bzowski M, Christian E R 2009 Science 326 959

    [20]

    Fuselier S A, Allegrini F, Funsten H O, Ghielmetti A G 2009 Science 326 962

    [21]

    Heerikhuisen J, Pogorelov N V, Zank G P 2010 Astrophys. J. Lett. 710 L172

    [22]

    Florinski V, Zank G P, Heerikhuisen J, Hu Q, Khazanov I 2010 Astrophys. J. 719 1097

    [23]

    Liu K J, Eberhard M, Peter G S, Dan W 2012 J. Geophys. Res. A 117 10102

    [24]

    Cao J B, Wang X Y 1998 Chin. Phys. Lett. 15 38

    [25]

    Gary S P, Madland C D 1988 J. Geophys. Res. 93 235

    [26]

    Cao J B, Zhou G C, Wang X Y 1998 Geophy. Res. Lett. 25 9

    [27]

    Cao J B, Zhou G C, Wang X Y, Wu J S 1999 Chin. J. Space Sci. 19 28 (in Chinese) [曹晋滨, 周国成, 汪学毅, 吴京生 1999 空间科学学报 19 28]

    [28]

    Li Y, Yoon P H, Wu C S, Weatherwax A T 1997 Phys. Plasmas 4 4103

    [29]

    Wang X Y, Lin Y 2003 Phys. Plasmas 10 3528

    [30]

    Gary S P, Christian D M, Omidi N, Winske D 1988 J. Geophys. Res. 93 9584

    [31]

    Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishing House) p527 (in Chinese) [傅竹风,胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科技出版社) 第527页]

    [32]

    Swift D W, Lee L C 1983 J. Geophys. Res. 88 111

    [33]

    Lin Y, Wang X Y 2005 J. Geophys. Res. A 110 12216

    [34]

    Pang Y, Lin Y, Deng X H, Wang X Y, Tan B 2010 J. Geophys. Res. 115 A0320

    [35]

    Tan B, Lin Y, Perez J D, Wang X Y 2012 J. Geophys. Res. A 117 03217

    [36]

    Gary S P, Smith C W, Lee M A, Goldstein M L 1984 Phys. Fluids 27 1852

  • [1]

    Wu C S, Davidson R C 1972 J. Geophys. Res. 77 5399

    [2]

    Akimoto k, Winske D, Gary S P, Thomsen M F 1993 J. Geophys. Res. 98 1419

    [3]

    Winske D, Gary S P 1986 J. Geophys. Res. 91 6825

    [4]

    Winske D, Wu C S, Li Y Y, Zhou G C 1984 J. Geophys. Res. 89 7327

    [5]

    Winske D, Wu C S, Li Y Y, Mou Z Z, Guo S Y 1985 J. Geophys. Res. 90 2713

    [6]

    Blum P W, Fahr H J 1970 Astro. Astrophys. 4 280

    [7]

    Holzer T E 1972 Astro. Astrophys. 77 5407

    [8]

    Wu C S, Winske D, Gaffey J D 1986 Geophy. Res. Lett. 13 865

    [9]

    Gary S P, Hinata S, Madland C D, Winske D 1986 Geophy. Res. Lett. 13 1364

    [10]

    Zhou G C, Li Y, Cao J B, Wang X Y 1998 Chin. Phys. Lett. 15 895

    [11]

    Wang X Y, Wu C S, Wang S, Chao J K, Lin Y, Yoon P H 2001 Astrophys. J. 547 1159

    [12]

    Eastman T E, Anderson R R, Frank L A, Parks G K 1981 J. Geophys. Res. 86 4379

    [13]

    Gurgiolo C, Parks G K, Mauk B H, Lin C S, Anderson K A, Lin R P, Reme H 1981 J. Geophys. Res. 86 4415

    [14]

    Cairns I H 1990 J. Geophys. Res. 95 15167

    [15]

    Coates A J, Johnstone A D, Wilken B, Neubauer F M 1993 J. Geophys. Res. 98 20985

    [16]

    Hardy D A, Hastings D E, Rivas D R, Burke W J, Cooke D L, Gentile L C 1996 J. Geophys. Res. 101 19629

    [17]

    McComas D J, Dayeh M A, Allegrini F, Bzowski M 2012 Astrophys. J. Suppl. S 203 1

    [18]

    McComas D J, Lewis W S, Schwadron N A 2014 Rev. Geophys. 52 118

    [19]

    McComas D J, Allegrini F, Bochsler P, Bzowski M, Christian E R 2009 Science 326 959

    [20]

    Fuselier S A, Allegrini F, Funsten H O, Ghielmetti A G 2009 Science 326 962

    [21]

    Heerikhuisen J, Pogorelov N V, Zank G P 2010 Astrophys. J. Lett. 710 L172

    [22]

    Florinski V, Zank G P, Heerikhuisen J, Hu Q, Khazanov I 2010 Astrophys. J. 719 1097

    [23]

    Liu K J, Eberhard M, Peter G S, Dan W 2012 J. Geophys. Res. A 117 10102

    [24]

    Cao J B, Wang X Y 1998 Chin. Phys. Lett. 15 38

    [25]

    Gary S P, Madland C D 1988 J. Geophys. Res. 93 235

    [26]

    Cao J B, Zhou G C, Wang X Y 1998 Geophy. Res. Lett. 25 9

    [27]

    Cao J B, Zhou G C, Wang X Y, Wu J S 1999 Chin. J. Space Sci. 19 28 (in Chinese) [曹晋滨, 周国成, 汪学毅, 吴京生 1999 空间科学学报 19 28]

    [28]

    Li Y, Yoon P H, Wu C S, Weatherwax A T 1997 Phys. Plasmas 4 4103

    [29]

    Wang X Y, Lin Y 2003 Phys. Plasmas 10 3528

    [30]

    Gary S P, Christian D M, Omidi N, Winske D 1988 J. Geophys. Res. 93 9584

    [31]

    Fu Z F, Hu Y Q 1995 Numerical Simulation of Space Plasma (Hefei: Anhui Science and Technology Publishing House) p527 (in Chinese) [傅竹风,胡友秋 1995 空间等离子体数值模拟 (合肥: 安徽科技出版社) 第527页]

    [32]

    Swift D W, Lee L C 1983 J. Geophys. Res. 88 111

    [33]

    Lin Y, Wang X Y 2005 J. Geophys. Res. A 110 12216

    [34]

    Pang Y, Lin Y, Deng X H, Wang X Y, Tan B 2010 J. Geophys. Res. 115 A0320

    [35]

    Tan B, Lin Y, Perez J D, Wang X Y 2012 J. Geophys. Res. A 117 03217

    [36]

    Gary S P, Smith C W, Lee M A, Goldstein M L 1984 Phys. Fluids 27 1852

计量
  • 文章访问数:  1821
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-03
  • 修回日期:  2014-12-04
  • 刊出日期:  2015-05-05

低能质子环束流与等离子体相互作用过程的一维混合模拟研究

  • 1. 南京信息工程大学物理系, 南京 210044;
  • 2. 南京信息工程大学空间天气研究所, 南京 210044;
  • 3. 国家空间天气监测预警中心, 北京 100081
    基金项目: 

    国家自然科学基金(批准号: 11105075, 41274147)、江苏省高校青蓝工程(2012), 江苏省公派留学基金(批准号: JS2012-105)和江苏省普通高校研究生科研创新计划项目(批准号: CXZZ12-0509)资助的课题.

摘要: 运用一维混合模拟方法, 研究了垂直于等离子体磁场入射的低能质子环束流与等离子体的相互作用过程. 结果显示: 由质子环束流激发的等离子体波首先经历指数式快速增长的线性阶段, 随后出现饱和、衰减和相对稳定的非线性阶段. 在线性阶段, 质子束投掷角散射使波模共振作用迅速减弱, 波的增长很快出现饱和. 随后, 持续的投掷角散射, 使入射质子在速度空间从环状分布渐变为均匀分布, 同时初始阶段的右手共振不稳定性逐渐消失, 在最后相对稳定阶段只存在阿尔芬波. 研究发现, 背景等离子体的有效加热始于非线性阶段, 等离子体波的形成有助于将质子束动能转换为背景等离子体的热能.

English Abstract

参考文献 (36)

目录

    /

    返回文章
    返回