-
目标以极高速度在大气层内运动时, 周围会因剧烈摩擦产生等离子体绕流场. 等离子体绕流场运动速度分布不均匀, 而且绕流场电子密度随时间动态变化, 导致等离子体绕流场对入射其中的电磁波产生不均匀的频率调制, 进而影响雷达的探测性能. 为了复现等离子体绕流场在电磁波照射时产生的不均匀频谱调制现象, 本文在中国科学院力学研究所JF-10风洞开展了等离子体绕流场回波频谱测量实验, 通过信号源、环形器、天线和频谱仪组成的测量系统, 以点频发射体制, 获取了S和C波段的回波频谱数据, 观察到了等离子体绕流场对目标回波频谱的调制现象, 对测量现象的形成原因进行了讨论; 基于测量数据, 仿真分析了等离子体绕流场对目标一维距离像的散焦效应.
When the aircraft moves through the atmosphere at a very high speed, the aircraft will experience intense friction with the surrounding atmosphere, which causes the air to be ionized into plasma, thus producing a plasma flow field around it. Plasma is constantly generated on the windward side of the aircraft and flows backwards. The velocity of plasma is different from that of the aircraft. In addition to the dispersion characteristics of the plasma and the non-uniform distribution around the target, the plasma flow field will produce the effects of amplitude, frequency and phase modulation on the incident radar wave, which will change the electromagnetic scattering characteristics of the target. In order to reproduce the non-uniform Doppler phenomenon in the flow field under electromagnetic wave irradiation, the plasma echo spectrum is measured experimentally in the JF-10 wind tunnel of the Institute of Mechanics, the Chinese Academy of Sciences. The echo spectrum data of S band and C band are obtained by using a measurement system composed of signal source, circulator, antenna and spectrometer, and based on the measured data the one-dimensional range profile of the plasma coated target is simulated, and the results show that the plasma flow field has a spectrum modulation effect on the target. When the speed of the flow field cannot be compensated for accurately, the spectral modulation effect will further cause the one-dimensional range profile to defocus, which will affect the ability of radar to detect and track the object. The preliminary analysis shows that the effect is caused mainly by the inhomogeneous velocity distribution of plasma flow field and the sudden change of medium parameters when the shock wave arrives. This experiment can provide data support for verifying the electromagnetic characteristics modeling method of plasma flow field. -
Keywords:
- plasma flow field /
- spectrum modulation /
- one-dimensional range profile /
- wind tunnel
[1] Atatom T K 2018 IEEE Trans. Plasma Sci. 46 494Google Scholar
[2] Khan W, Ali M, Habib Y 2020 IEEE Trans. Plasma Sci. 48 2996Google Scholar
[3] 吴巍, 刘方, 钟建林, 王国宏 2019 电波科学学报 34 610Google Scholar
Wu W, Liu F, Zhong J L, Wang G H 2019 Chin. J. Radio Sci. 34 610Google Scholar
[4] 喻明浩 2019 物理学报 68 185202Google Scholar
Yu M H 2019 Acta Phys. Sin. 68 185202Google Scholar
[5] 韦笑, 彭世鏐, 殷红成, 印国泰 2011 系统工程与电子技术 33 506Google Scholar
Wei X, Peng S L, Yin H C, Yin G T 2011 J. Syst. Eng. Electron. 33 506Google Scholar
[6] Tai C T 1964 Proc. IEEE 52 685Google Scholar
[7] Costen R C, Adamson D 1965 Proc. IEEE 53 1181Google Scholar
[8] Yeh C, Casey K F 1966 Phys. Rev. 144 665Google Scholar
[9] 郭琳静 2018 博士学位论文 (西安: 西安电子科技大学)
Guo L J 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[10] Ling H, Kim H, Hallock G A, Birkner B W 1991 IEEE Trans. Antennas Propag. 39 1412Google Scholar
[11] 杨利霞, 谢应涛, 王祎君 2009 强激光与粒子束 21 1710
Yang L X, Xie Y T, Wang Y J 2009 High Power Laser Part. Beams 21 1710
[12] 杨利霞, 于萍萍, 马辉 2012 电波科学学报 27 18Google Scholar
Yang L X, Yu PP, Ma H 2012 Chin. J. Radio Sci. 27 18Google Scholar
[13] Hayami R A 1994 AIAA 17th Aerospace ground testing conference Nashville, TN, USA, July 6–8, 1992 p16
[14] Dunn M G 1970 4th Plasma Sheath Symposium Hampton Virginia, USA, October 13–15, 1970 p261
[15] 马平, 石安华, 杨益兼 2015 强激光与粒子束 27 145Google Scholar
Ma P, Shi A H, Yang Y Q 2015 High Power Laser Part. Beams 27 145Google Scholar
[16] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar
Ma P, Shi A H, Yang Y Q, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar
[17] 马平, 石安华, 杨益兼 2017 兵工学报 38 1223Google Scholar
Ma P, Shi A H, Yang Y Q 2017 Acta Armam. 38 1223Google Scholar
[18] 于哲峰, 陈旭明, 杨鹰 2019 兵工学报 40 2467Google Scholar
Yu Z F, Chen X M, Yang Y 2019 Acta Armam. 40 2467Google Scholar
[19] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞 2018 物理学报 67 025201Google Scholar
Ma H J, Wang G L, Luo J, Liu L P, Pan D X, Zhang J, Xing Y L, Tang F 2018 Acta Phys. Sin. 67 025201Google Scholar
[20] 金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205Google Scholar
Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205Google Scholar
[21] 曾明 2006 博士学位论文 (北京: 中国科学院力学研究所)
Zeng M 2006 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Sciences) (in Chinese)
[22] Zeng M, Xu D, Liu J, Qin N. 2016 J. Thermophys. Heat Transfer 30 12Google Scholar
[23] 宁超, 耿旭朴, 王超, 黄培康 2014 雷达学报 3 142Google Scholar
Ning C, Geng X P, Wang C, Huang P K 2014 J. Radars 3 142Google Scholar
-
表 1 试验段核心区气流平均参数
Table 1. Average airflow parameters in the core area of the test section.
参数 取值 ${\rho _\infty }$/(kg·m–3) 6.974 × 10–4 ${p_\infty }$/Pa 118.0 $ {T_\infty } $/K 306.8 $ {T_{v\infty }} $/K 3382 ${V_\infty }$/(m·s–1) 5173 组元
质量
分数$ C_{\rm N^2} $ 0.7456 $ C_{\rm O^2} $ 5.464 × 10–2 CN 5.324 × 10–9 CO 0.1593 CNO 4.049 × 10–2 $ C_{\rm {NO}^+} $ $ C_{\rm {NO}^+} $ -
[1] Atatom T K 2018 IEEE Trans. Plasma Sci. 46 494Google Scholar
[2] Khan W, Ali M, Habib Y 2020 IEEE Trans. Plasma Sci. 48 2996Google Scholar
[3] 吴巍, 刘方, 钟建林, 王国宏 2019 电波科学学报 34 610Google Scholar
Wu W, Liu F, Zhong J L, Wang G H 2019 Chin. J. Radio Sci. 34 610Google Scholar
[4] 喻明浩 2019 物理学报 68 185202Google Scholar
Yu M H 2019 Acta Phys. Sin. 68 185202Google Scholar
[5] 韦笑, 彭世鏐, 殷红成, 印国泰 2011 系统工程与电子技术 33 506Google Scholar
Wei X, Peng S L, Yin H C, Yin G T 2011 J. Syst. Eng. Electron. 33 506Google Scholar
[6] Tai C T 1964 Proc. IEEE 52 685Google Scholar
[7] Costen R C, Adamson D 1965 Proc. IEEE 53 1181Google Scholar
[8] Yeh C, Casey K F 1966 Phys. Rev. 144 665Google Scholar
[9] 郭琳静 2018 博士学位论文 (西安: 西安电子科技大学)
Guo L J 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[10] Ling H, Kim H, Hallock G A, Birkner B W 1991 IEEE Trans. Antennas Propag. 39 1412Google Scholar
[11] 杨利霞, 谢应涛, 王祎君 2009 强激光与粒子束 21 1710
Yang L X, Xie Y T, Wang Y J 2009 High Power Laser Part. Beams 21 1710
[12] 杨利霞, 于萍萍, 马辉 2012 电波科学学报 27 18Google Scholar
Yang L X, Yu PP, Ma H 2012 Chin. J. Radio Sci. 27 18Google Scholar
[13] Hayami R A 1994 AIAA 17th Aerospace ground testing conference Nashville, TN, USA, July 6–8, 1992 p16
[14] Dunn M G 1970 4th Plasma Sheath Symposium Hampton Virginia, USA, October 13–15, 1970 p261
[15] 马平, 石安华, 杨益兼 2015 强激光与粒子束 27 145Google Scholar
Ma P, Shi A H, Yang Y Q 2015 High Power Laser Part. Beams 27 145Google Scholar
[16] 马平, 石安华, 杨益兼, 于哲峰, 梁世昌, 黄洁 2017 物理学报 66 102401Google Scholar
Ma P, Shi A H, Yang Y Q, Yu Z F, Liang S C, Huang J 2017 Acta Phys. Sin. 66 102401Google Scholar
[17] 马平, 石安华, 杨益兼 2017 兵工学报 38 1223Google Scholar
Ma P, Shi A H, Yang Y Q 2017 Acta Armam. 38 1223Google Scholar
[18] 于哲峰, 陈旭明, 杨鹰 2019 兵工学报 40 2467Google Scholar
Yu Z F, Chen X M, Yang Y 2019 Acta Armam. 40 2467Google Scholar
[19] 马昊军, 王国林, 罗杰, 刘丽萍, 潘德贤, 张军, 邢英丽, 唐飞 2018 物理学报 67 025201Google Scholar
Ma H J, Wang G L, Luo J, Liu L P, Pan D X, Zhang J, Xing Y L, Tang F 2018 Acta Phys. Sin. 67 025201Google Scholar
[20] 金铭, 韦笑, 吴洋, 张羽淮, 余西龙 2015 物理学报 64 205205Google Scholar
Jin M, Wei X, Wu Y, Zhang Y H, Yu X L 2015 Acta Phys. Sin. 64 205205Google Scholar
[21] 曾明 2006 博士学位论文 (北京: 中国科学院力学研究所)
Zeng M 2006 Ph. D. Dissertation (Beijing: Institute of Mechanics, Chinese Academy of Sciences) (in Chinese)
[22] Zeng M, Xu D, Liu J, Qin N. 2016 J. Thermophys. Heat Transfer 30 12Google Scholar
[23] 宁超, 耿旭朴, 王超, 黄培康 2014 雷达学报 3 142Google Scholar
Ning C, Geng X P, Wang C, Huang P K 2014 J. Radars 3 142Google Scholar
计量
- 文章访问数: 3226
- PDF下载量: 45
- 被引次数: 0