搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹频段粗糙面宽带一维距离像特性

格根塔娜 钟凯 乔鸿展 张献中 李吉宁 徐德刚 姚建铨

引用本文:
Citation:

太赫兹频段粗糙面宽带一维距离像特性

格根塔娜, 钟凯, 乔鸿展, 张献中, 李吉宁, 徐德刚, 姚建铨

Broadband one-dimensional range profiles characteristic of rough surface in terahertz band

Gegen Tana, Zhong Kai, Qiao Hong-Zhan, Zhang Xian-Zhong, Li Ji-Ning, Xu De-Gang, Yao Jian-Quan
PDF
HTML
导出引用
  • 基于太赫兹时域光谱技术搭建了近单站宽带太赫兹脉冲一维距离像的测量系统, 其距离分辨率可达亚毫米量级. 首先, 利用该系统测量了多种形状目标的一维距离像, 验证了测量系统的可靠性及通过目标的一维距离像中的散射特征位置分布来识别其外形特征的可行性. 进而, 通过测量不同粗糙度的铝板目标, 结合粗糙表面散射基尔霍夫近似和微扰法理论, 探究了目标表面粗糙度对于一维距离像强度及脉冲宽度的影响规律. 此外, 发现双站系统中一维距离像的时延与目标姿态的改变方向有关. 相关研究结果对太赫兹雷达目标探测与识别具有一定的指导意义.
    The one-dimensional (1D) range profile is an important back scattering characteristic of objective, which reveals the longitudinal distribution of radar cross section (RCS) along the detection beam. Since the shape and posture can be reflected by the 1D range profile, it is of great significance in military to determine the target orientation, velocity and whether it is armed. In this paper, broadband terahertz 1D-range-profile measurement system is built based on the time-domain spectroscopy (TDS) system. It is in bistatic configuration (bistatic angle of 9°) and the signal-to-noise ratio (SNR) is 34.5 dB, with a gold mirror used as a reflector. Benefiting from the ultrashort terahertz pulse width (full pulse width of 0.52 ps), the bandwidth covers the frequency range from 0.1 THz to 2.5 THz (peaked at 0.9 THz), corresponding to the range resolution on a submillimeter scale.Firstly, the 1D range profiles of several objects in different shapes are measured, including the step, cylinder, step cone and their combination, which indicates that the geometric profile of the target in the detection direction is adequate to identify the shape feature of the target and proves the reliability of the 1D range profile measuring system based on TDS. Secondly, aluminum plates with different surface roughness in a range of 0–25 μm are also characterized. The Kirchhoff approximation theory and small perturbation method (SPM) are introduced to illustrate the characteristics of broadband terahertz 1D range profile related to the surface roughness of target. It is found that the scattering characteristic of metal object in the terahertz range is sensitive to surface roughness. If the surface roughness of the object is larger, the peak intensity of the 1D range profile will be weaker and the echo signal pulse width becomes wider. The rule is also applicable for the cases with different incident angles. Furthermore, it is revealed that the time delay of the 1D range profile in the bistatic system is related to the rotation direction of the target, which is useful in estimating the posture of the target. In summary, the characteristics of 1D range profile for metal objects relating to shape, surface roughness and posture are studied. The conclusions have certain guiding significance for the target detection and recognition of terahertz radar.
      通信作者: 钟凯, zhongkai@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175184)和微光机电系统技术教育部重点实验室开放课题(批准号: 2022-04)资助的课题.
      Corresponding author: Zhong Kai, zhongkai@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62175184) and the Open Fund of the Key Laboratory of Micro Opto-electro Mechanical System Technology, Ministry of Education (Grant No. 2022-04).
    [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar

    [2]

    Lee S, Baek S, Kim T T, Cho H, Lee S, Kang J H, Min B 2020 Adv. Mater. 32 2000250Google Scholar

    [3]

    Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar

    [4]

    Sheen D M, Fernandes J L, Tedeschi J R, McMakin D L, Jones A M, Lechelt W M, Severtsen R H 2013 Proc. SPIE 8715 871509

    [5]

    江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强2015 物理学报 64 024101Google Scholar

    Jiang Y S, Nie M Y, Zhang C H, Xin C W, Hua H Q 2015 Acta Phys. Sin. 64 024101Google Scholar

    [6]

    梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力 2014 物理学报 63 214102Google Scholar

    Liang D C, Wei M G, Gu J Q, Yin Z P, Ouyang C M, Tian Z, He M X, Han J G, Zhang W L 2014 Acta Phys. Sin. 63 214102Google Scholar

    [7]

    Jansen C, Krumbholz N, Geise R, Enders A, Koch M 2009 3rd European Conference on Antennas and Propagation Berlin, Germany, March 23–27, 2009 p3645

    [8]

    Brooks L D, Wolfe W L 1980 Proc. SPIE 257 177Google Scholar

    [9]

    Cheville R A, Daniel R G 1995 Appl. Phys. Lett. 67 1960Google Scholar

    [10]

    Gente R, Jansen C, Geise R, Peters O, Gente M, Krumbholz N, Moller C, Busch S F, Koch M 2012 IEEE Trans. Terahertz Sci. Technol. 2 424Google Scholar

    [11]

    王瑞君 2015 博士学位论文 (长沙: 国防科学技术大学)

    Wang R H 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [12]

    Li Y, Tong L, Yang X, Li M 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Valencia, Spain, July 22–27, 2018 p2131

    [13]

    Li J, Guo L X, Zeng H 2008 Prog. Electromagn. Res. 88 197Google Scholar

    [14]

    Jiang D, Xu X J 2010 International Conference on Electromagnetics in Advanced Applications Sydney, Australia, September 20–24, 2010 p847

    [15]

    Erich N G, Nina P, Richard A C, Joshua G, David N 2017 IEEE Trans. Terahertz Sci. Technol. 7 546Google Scholar

    [16]

    Dikmelik Y, Spicer J B, Fitch M J, Osiander R 2006 Opt. Lett. 31 3653Google Scholar

    [17]

    DiGiovanni D A, Gatesman A J, Goyette T M, Giles R H 2014 Proc. SPIE 9078 90780A

    [18]

    Wei J C, Chen H, Qin X, Cui T J, 2017 IEEE Trans. Antennas Propag. 65 3154Google Scholar

    [19]

    Gao J K, Wang R J, Deng B, Qin Y L, Wang H Q, Li X 2017 IEEE Antennas Wirel. Propag. Lett. 16 975Google Scholar

    [20]

    牟媛, 吴振森, 赵豪, 武光玲 2018雷达学报7 83Google Scholar

    Mou Y, Wu Z S, Zhao H, Wu G L 2018 J. Radars 7 83Google Scholar

    [21]

    陈刚, 党红杏, 谭小敏, 陈珲, 崔铁军 2018 雷达学报7 75Google Scholar

    Chen G, Dang H X, Tan X M, Chen H, Cui T J 2018 J. Radars 7 75Google Scholar

    [22]

    Jun C W, Chen H, Cui T J 2016 Geoscience and Remote Sensing Symposium Beijing, China, July 10–15, 2016 p3680

    [23]

    史杰, 钟凯, 刘楚, 王茂榕, 乔鸿展, 李吉宁, 徐德刚, 姚建铨 2018 红外与激光工程 47 194

    Shi J, Zhong K, Liu C, Wang M R, Qiao H Z, Li J N, Xu D G, Yao J Q 2018 Infrared Laser Eng. 47 194

    [24]

    欧湛, 郑小平, 耿华 2019 清华大学学报(自然科学版) 59 388Google Scholar

    Ou Z, Zheng X P, Geng H 2019 J. Tsinghua Univ. (Sci. Technol. ) 59 388Google Scholar

    [25]

    Bennett H E, Porteus J O 1961 J. Opt. Soc. Am. 51 123Google Scholar

    [26]

    郭立新, 王蕊, 吴振森 2010 随机粗糙面散射的基本理论与方法 (北京: 科学出版社) 第47页

    Guo L X, Wang R, Wu Z S 2010 Basic Theories and Methods of Random Rough Surface Scattering (Beijing: Science Press) p47

  • 图 1  宽带太赫兹一维距离像测量系统

    Fig. 1.  Measurement system of broadband terahertz one-dimensional (1D) range profiles.

    图 2  金镜反射信号 (a) 时域; (b) 频域

    Fig. 2.  Reflected signal of gold mirror: (a) Time domain; (b) frequency domain.

    图 3  阶梯目标一维距离像 (a) 时域; (b) 频域

    Fig. 3.  1D range profile of step: (a) Time domain; (b) frequency domain.

    图 4  不同形状简单体目标及其组合的一维距离像 (a) 圆柱; (b) 台阶体; (c) 组合体; (d) 阶梯圆锥

    Fig. 4.  1D range profiles of different simple objects and their combination: (a) Cylinder; (b) step; (c) combination; (d) step cone.

    图 5  不同粗糙度铝合金平板的一维距离像实验与基尔霍夫近似理论对比结果. 其中理论计算中选取太赫兹频率为0.9 THz, 光滑铝合金表面反射率设为0.995

    Fig. 5.  Comparison of 1D range profile experimental results with Kirchhoff approximation theoretical results of Al plates with different surface roughness. The terahertz frequency is 0.9 THz and reflectance of smooth Al surface is 0.995 in theoretical calculation.

    图 6  实验测得的不同粗糙度铝板一维像脉宽展宽与入射角度的关系

    Fig. 6.  Relationship between 1D profiles pulse widths of Al plates with different surface roughness and the incident angle.

    图 7  不同粗糙程度铝质表面后向散射系数与入射角度的关系

    Fig. 7.  Relationship between back scattering coefficient of Al surfaces with different roughness and the incident angle.

    图 8  目标平板旋转示意图

    Fig. 8.  Schematic of objects rotation.

    图 9  粗糙度为7 μm的粗糙铝合金平板在不同转角下的一维距离像. 其中, “–”代表顺时针, “+”代表逆时针

    Fig. 9.  1D range profiles of Al plate with roughness of 7 μm at different incident angle. “–” means clockwise, “+” means anticlockwise.

  • [1]

    Beard M C, Turner G M, Schmuttenmaer C A 2002 J. Phys. Chem. B 106 7146Google Scholar

    [2]

    Lee S, Baek S, Kim T T, Cho H, Lee S, Kang J H, Min B 2020 Adv. Mater. 32 2000250Google Scholar

    [3]

    Naftaly M, Miles R E 2007 Proc. IEEE 95 1658Google Scholar

    [4]

    Sheen D M, Fernandes J L, Tedeschi J R, McMakin D L, Jones A M, Lechelt W M, Severtsen R H 2013 Proc. SPIE 8715 871509

    [5]

    江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强2015 物理学报 64 024101Google Scholar

    Jiang Y S, Nie M Y, Zhang C H, Xin C W, Hua H Q 2015 Acta Phys. Sin. 64 024101Google Scholar

    [6]

    梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力 2014 物理学报 63 214102Google Scholar

    Liang D C, Wei M G, Gu J Q, Yin Z P, Ouyang C M, Tian Z, He M X, Han J G, Zhang W L 2014 Acta Phys. Sin. 63 214102Google Scholar

    [7]

    Jansen C, Krumbholz N, Geise R, Enders A, Koch M 2009 3rd European Conference on Antennas and Propagation Berlin, Germany, March 23–27, 2009 p3645

    [8]

    Brooks L D, Wolfe W L 1980 Proc. SPIE 257 177Google Scholar

    [9]

    Cheville R A, Daniel R G 1995 Appl. Phys. Lett. 67 1960Google Scholar

    [10]

    Gente R, Jansen C, Geise R, Peters O, Gente M, Krumbholz N, Moller C, Busch S F, Koch M 2012 IEEE Trans. Terahertz Sci. Technol. 2 424Google Scholar

    [11]

    王瑞君 2015 博士学位论文 (长沙: 国防科学技术大学)

    Wang R H 2015 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [12]

    Li Y, Tong L, Yang X, Li M 2018 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) Valencia, Spain, July 22–27, 2018 p2131

    [13]

    Li J, Guo L X, Zeng H 2008 Prog. Electromagn. Res. 88 197Google Scholar

    [14]

    Jiang D, Xu X J 2010 International Conference on Electromagnetics in Advanced Applications Sydney, Australia, September 20–24, 2010 p847

    [15]

    Erich N G, Nina P, Richard A C, Joshua G, David N 2017 IEEE Trans. Terahertz Sci. Technol. 7 546Google Scholar

    [16]

    Dikmelik Y, Spicer J B, Fitch M J, Osiander R 2006 Opt. Lett. 31 3653Google Scholar

    [17]

    DiGiovanni D A, Gatesman A J, Goyette T M, Giles R H 2014 Proc. SPIE 9078 90780A

    [18]

    Wei J C, Chen H, Qin X, Cui T J, 2017 IEEE Trans. Antennas Propag. 65 3154Google Scholar

    [19]

    Gao J K, Wang R J, Deng B, Qin Y L, Wang H Q, Li X 2017 IEEE Antennas Wirel. Propag. Lett. 16 975Google Scholar

    [20]

    牟媛, 吴振森, 赵豪, 武光玲 2018雷达学报7 83Google Scholar

    Mou Y, Wu Z S, Zhao H, Wu G L 2018 J. Radars 7 83Google Scholar

    [21]

    陈刚, 党红杏, 谭小敏, 陈珲, 崔铁军 2018 雷达学报7 75Google Scholar

    Chen G, Dang H X, Tan X M, Chen H, Cui T J 2018 J. Radars 7 75Google Scholar

    [22]

    Jun C W, Chen H, Cui T J 2016 Geoscience and Remote Sensing Symposium Beijing, China, July 10–15, 2016 p3680

    [23]

    史杰, 钟凯, 刘楚, 王茂榕, 乔鸿展, 李吉宁, 徐德刚, 姚建铨 2018 红外与激光工程 47 194

    Shi J, Zhong K, Liu C, Wang M R, Qiao H Z, Li J N, Xu D G, Yao J Q 2018 Infrared Laser Eng. 47 194

    [24]

    欧湛, 郑小平, 耿华 2019 清华大学学报(自然科学版) 59 388Google Scholar

    Ou Z, Zheng X P, Geng H 2019 J. Tsinghua Univ. (Sci. Technol. ) 59 388Google Scholar

    [25]

    Bennett H E, Porteus J O 1961 J. Opt. Soc. Am. 51 123Google Scholar

    [26]

    郭立新, 王蕊, 吴振森 2010 随机粗糙面散射的基本理论与方法 (北京: 科学出版社) 第47页

    Guo L X, Wang R, Wu Z S 2010 Basic Theories and Methods of Random Rough Surface Scattering (Beijing: Science Press) p47

  • [1] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性. 物理学报, 2024, 73(19): 193201. doi: 10.7498/aps.73.20240944
    [2] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [3] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [4] 满良, 邓浩川, 吴洋, 余西龙, 肖志河. 风洞模拟等离子体绕流场回波频谱调制特性实验研究. 物理学报, 2022, 71(3): 035203. doi: 10.7498/aps.71.20211471
    [5] 满良, 邓浩川. 风洞模拟等离子体绕流场回波频谱调制特性实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211471
    [6] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [7] 宋克超, 霍帅楠, 涂冬明, 侯新富, 吴晓静, 王明伟. 二维黑磷对太赫兹波调控特性的理论研究. 物理学报, 2020, 69(17): 174205. doi: 10.7498/aps.69.20200105
    [8] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [9] 王珊, 王辅忠. 基于自适应随机共振理论的太赫兹雷达信号检测方法. 物理学报, 2018, 67(16): 160502. doi: 10.7498/aps.67.20172367
    [10] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [11] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [12] 江月松, 聂梦瑶, 张崇辉, 辛灿伟, 华厚强. 粗糙表面涂覆目标的太赫兹波散射特性研究. 物理学报, 2015, 64(2): 024101. doi: 10.7498/aps.64.024101
    [13] 杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广. L-天冬酰胺及其一水合物的太赫兹光谱研究. 物理学报, 2014, 63(13): 133203. doi: 10.7498/aps.63.133203
    [14] 王瑞君, 邓彬, 王宏强, 秦玉亮. 太赫兹与远红外频段下铝质目标电磁特性与计算. 物理学报, 2014, 63(13): 134102. doi: 10.7498/aps.63.134102
    [15] 梁达川, 魏明贵, 谷建强, 尹治平, 欧阳春梅, 田震, 何明霞, 韩家广, 张伟力. 缩比模型的宽频时域太赫兹雷达散射截面(RCS)研究. 物理学报, 2014, 63(21): 214102. doi: 10.7498/aps.63.214102
    [16] 梁美彦, 张存林. 相位补偿算法对提高太赫兹雷达距离像分辨率的研究. 物理学报, 2014, 63(14): 148701. doi: 10.7498/aps.63.148701
    [17] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [18] 刘文军, 毛宏燕, 付国庆, 曲士良. 散射介质中多重散射太赫兹脉冲的时域统计特性. 物理学报, 2010, 59(2): 913-917. doi: 10.7498/aps.59.913
    [19] 李艳辉, 吴振森, 宫彦军, 张耿, 王明军. 目标激光脉冲一维距离成像研究. 物理学报, 2010, 59(10): 6988-6993. doi: 10.7498/aps.59.6988
    [20] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
计量
  • 文章访问数:  3509
  • PDF下载量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-09
  • 修回日期:  2023-07-02
  • 上网日期:  2023-07-13
  • 刊出日期:  2023-09-20

/

返回文章
返回