搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹光谱学研究CL-20/MTNP共晶振动特性

刘泉澄 杨富 张祺 段勇威 邓琥 尚丽平

引用本文:
Citation:

太赫兹光谱学研究CL-20/MTNP共晶振动特性

刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平
cstr: 32037.14.aps.73.20240944

Research on vibrational features of CL-20/MTNP cocrystal by terahertz spectroscopy

Liu Quan-Cheng, Yang Fu, Zhang Qi, Duan Yong-Wei, Deng Hu, Shang Li-Ping
cstr: 32037.14.aps.73.20240944
PDF
HTML
导出引用
  • 共晶是一种分子层次调控材料物化性质的高效方法, 然而目前共晶复杂体系结构与宏观性质间关系一直难以得到深入理解. 本文依据太赫兹光谱可激发晶体内弱作用的优势, 以CL-20/MTNP共晶为对象开展了太赫兹振动光谱研究. 首先, 测量CL-20、MTNP和共晶CL-20/MTNP的太赫兹吸收光谱. 其次, 分析了基于密度泛函理论的振动计算方法, 获得了3种物质太赫兹频段振动特性, 对吸收光谱进行振动匹配. 最后, 采用振动分解方法将晶体分子的整体振动分解为分子间和分子内振动. 在此基础上, 分析了共晶前后振动变化规律. 结果表明: 共晶后新形成的弱相互作用由CL-20分子主导, 同时MTNP分子主要通过3个硝基与CL-20分子交互作用. 本文的研究结论为共晶热性质提供了微观解析.
    Cocrystals represent an effective method to manipulate the physicochemical properties of materials at a molecular level. However, understanding the relationship between their complex crystal structures and macroscopic properties is a challenge. In this paper, by using terahertz (THz) spectroscopy to characterize non-covalent interactions within crystals, the THz vibrational spectra of the CL-20/MTNP cocrystal are studied. Firstly, the THz spectra of CL-20, MTNP, and the CL-20/MTNP cocrystal are measured at room temperature. Both absorption positions and intensities of the cocrystals differ from those of their original components, confirming the unique advantage of terahertz spectroscopy in cocrystal identification. Secondly, the THz vibrational features of the three materials are calculated based on density functional theory (DFT). Then, the experimental absorptions are matched with the calculated vibrations. Furthermore, a vibrational decomposition method is employed to decompose the molecular vibrations into intermolecular and intramolecular vibrations. The vibrational variations of the cocrystal compared with its original components are analyzed. The results reveal that in the cocrystal, the intermolecular vibrational modes of both CL-20 and MTNP molecules have changed compared with their raw materials. This indicates that the non-covalent interactions in the cocrystal have changed the original intermolecular interactions of these molecules. Consequently, this enhancement promotes the heat transfer between MTNP and CL-20 molecules, thereby improving the thermal stability of the cocrystal. These findings in this study demonstrate that the THz vibrational spectroscopy technology helps establish a relationship between the molecular structure of cocrystal and its macroscopic properties. This research contributes to deepening our understanding of cocrystal systems and opens up a new way for designing and optimizing materials.
      通信作者: 刘泉澄, liuqc@swust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 22305198)和西南科技大学博士基金(批准号: 21ZX7143)资助的课题.
      Corresponding author: Liu Quan-Cheng, liuqc@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 22305198) and the Doctoral Foundation of Southwest University of Science and Technology, China (Grant No. 21ZX7143).
    [1]

    Sun L J, Zhu W G, Zhang X T, Li L Q, Dong H L, Hu W P 2021 J. Am. Chem. Soc. 143 19243Google Scholar

    [2]

    Charpentier M D, Devogelaer J J, Tijink A, Meekes H, Tinnemans P, Vlieg E, de Gelder R, Johnston K, Ter Horst J H 2022 Cryst. Growth Des. 22 5511Google Scholar

    [3]

    Li X Y, Jin B, Luo L Q, Chu S J, Peng R F 2020 Thermochim. Acta 690 178665Google Scholar

    [4]

    Garbacz P, Wesolowski M 2020 Spectrochim. Acta Part A 234 118242Google Scholar

    [5]

    Zhang Y W, Ren G H, Su X Q, Meng T H, Zhao G Z 2022 Chin. Phys. B 31 103302Google Scholar

    [6]

    Wang C, Wang B, Wei G S, Chen J N, Wang L 2022 Chin. Phys. B 31 104201Google Scholar

    [7]

    Ruggiero M T 2020 J. Infrared Millim. Te. 41 491Google Scholar

    [8]

    Luczynska K, Druzbicki K, Runka T, Palka N, Wasicki J 2019 J. Infrared Millim. Te. 43 845Google Scholar

    [9]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 物理学报 72 173201Google Scholar

    Zheng Z P, Liu Y H, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [10]

    Davis M P, Mohara M, Shimura K, Korter T M 2020 J. Phys. Chem. A 124 9793Google Scholar

    [11]

    Wang P F, Zhao J T, Zhang Y M, Zhu Z J, Liu L Y, Zhao H W, Yang X C, Yang X N, Sun X H, He M X 2022 Int. J. Pharm. 620 121759Google Scholar

    [12]

    Xiao Y Y, Huang H, Zhao X Y, Zou P A J, Wei L Y, Liu Y, Jin B, Peng R F, Huang S L 2023 Cryst. Growth Des. 23 6393Google Scholar

    [13]

    Ma Q, Jiang T, Chi Y, Chen Y, Wang J, Huang J L, Nie F D 2017 New J. Chem. 41 4165Google Scholar

    [14]

    Clark S J, Segallii M, Pickardii C J, Hasnipiii P J, Probertiv M 2005 Z. Kristallogr. Cryst. Mater. 220 567Google Scholar

    [15]

    Banks P, Burgess L, Ruggiero M 2021 Phys. Chem. Chem. Phys. 23 20038Google Scholar

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [17]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [18]

    King M D, Buchanan W D, Korter T M 2011 Phys. Chem. Chem. Phys. 13 4250Google Scholar

    [19]

    Jepsen P U, Clark S J 2007 Chem. Phys. Lett. 442 275Google Scholar

    [20]

    Liu Q C, Deng H, Li H Z, Wang M C, Zahng Q, Kang Y, Shang L P 2022 Spectrochim. Acta A 283 121722Google Scholar

  • 图 1  三种物质的太赫兹吸收光谱和DFT计算结果(虚线表示主要的吸收峰位置) (a) CL-20; (b) MTNP; (c) CL-20/MTNP

    Fig. 1.  THz spectra and DFT calculations of the three materials (The dashed lines represent the main absorption positions): (a) CL-20; (b) MTNP; (c) CL-20/MTNP.

    图 2  三种物质的振动模式图 (a) CL-20在1.33 THz; (b) MTNP在0.88 THz; (c) CL-20/MTNP在3.08 THz. 为了清晰, 仅展示晶胞中的一个分子, 其中灰、白、红、蓝色分别表示碳、氢、氧、氮原子

    Fig. 2.  Vibration mode of the three materails: (a) CL-20 at 1.33 THz; (b) MTNP at 0.88 THz; (c) CL-20/MTNP at 3.08 THz. For clarity, only one molecule within the unit cell is shown. Gray, white, red, and blue colors represent carbon, hydrogen, oxygen, and nitrogen atoms, respectively.

    图 3  三种分子振动模式分解结果 (a) CL-20分子; (b) MTNP分子; (c) CL-20/MTNP共晶分子

    Fig. 3.  Decomposition results of three molecular vibration modes: (a) CL-20; (b) MTNP; (c) CL-20/MTNP cocrystal.

    图 4  共晶前后分子内基团的振动变化 (a) CL-20分子; (b) MTNP分子

    Fig. 4.  Vibrational variations of functional groups after cocrystallization: (a) CL-20; (b) MTNP.

    表 1  结构优化后晶格参数对比

    Table 1.  Comparison of lattice parameters after structural optimization.

    Lattice parametersCL-20/%MTNP/%CL-20/MTNP/%
    Angle α/(°)0.000.000.00
    Angle β/(°)0.710.000.06
    Angle γ/(°)0.000.000.00
    Length a–0.03–0.37–0.39
    Length b–0.36–0.400.49
    Length c–0.020.120.05
    Volume V3–0.81–0.650.12
    下载: 导出CSV

    表 2  三种物质太赫兹吸收中心位置与DFT计算结果

    Table 2.  Experiment absorption center and DFT calculations of the three materials.

    CL-20 MTNP CL-20/MTNP
    Exp. Cal. Δf Exp. Cal. Δf Exp. Cal. Δf
    0.99 0.88(0.98) 0.11 0.59 0.53(1.91) 0.06 1.04 0.92(1.87) 0.12
    1.31 1.33(1.47) 0.02 0.96 0.88(5.21) 0.07 1.28 1.26(2.97) 0.02
    1.43 1.43(1.62) 0 0.91(5.22) 1.53 1.57(5.65) 0.04
    2.08 2.07(4.25) 0.01 1.40 1.54(5.52) 0.14 2.11 1.97(4.04) 0.01
    2.50 2.68(6.59) 0.18 1.81 1.77(4.42) 0.04 2.24(3.99)
    2.70 2.75(7.11) 0.05 2.18 2.16(9.05) 0.02 2.62 2.54(10.70) 0.08
    3.75 3.48(12.88) 0.27 2.86 2.83(12.37) 0.03 3.34 3.08(10.66) 0.10
    3.53 3.41(7.45) 0.12 3.40(16.55)
    注: Exp. , Experiment/THz; Cal., Calculation/THz (km · mol–1); Δf , deviation between experiment and calculation.
    下载: 导出CSV
  • [1]

    Sun L J, Zhu W G, Zhang X T, Li L Q, Dong H L, Hu W P 2021 J. Am. Chem. Soc. 143 19243Google Scholar

    [2]

    Charpentier M D, Devogelaer J J, Tijink A, Meekes H, Tinnemans P, Vlieg E, de Gelder R, Johnston K, Ter Horst J H 2022 Cryst. Growth Des. 22 5511Google Scholar

    [3]

    Li X Y, Jin B, Luo L Q, Chu S J, Peng R F 2020 Thermochim. Acta 690 178665Google Scholar

    [4]

    Garbacz P, Wesolowski M 2020 Spectrochim. Acta Part A 234 118242Google Scholar

    [5]

    Zhang Y W, Ren G H, Su X Q, Meng T H, Zhao G Z 2022 Chin. Phys. B 31 103302Google Scholar

    [6]

    Wang C, Wang B, Wei G S, Chen J N, Wang L 2022 Chin. Phys. B 31 104201Google Scholar

    [7]

    Ruggiero M T 2020 J. Infrared Millim. Te. 41 491Google Scholar

    [8]

    Luczynska K, Druzbicki K, Runka T, Palka N, Wasicki J 2019 J. Infrared Millim. Te. 43 845Google Scholar

    [9]

    郑转平, 刘榆杭, 赵帅宇, 蒋杰伟, 卢乐 2023 物理学报 72 173201Google Scholar

    Zheng Z P, Liu Y H, Zhao S Y, Jiang J W, Lu L 2023 Acta Phys. Sin. 72 173201Google Scholar

    [10]

    Davis M P, Mohara M, Shimura K, Korter T M 2020 J. Phys. Chem. A 124 9793Google Scholar

    [11]

    Wang P F, Zhao J T, Zhang Y M, Zhu Z J, Liu L Y, Zhao H W, Yang X C, Yang X N, Sun X H, He M X 2022 Int. J. Pharm. 620 121759Google Scholar

    [12]

    Xiao Y Y, Huang H, Zhao X Y, Zou P A J, Wei L Y, Liu Y, Jin B, Peng R F, Huang S L 2023 Cryst. Growth Des. 23 6393Google Scholar

    [13]

    Ma Q, Jiang T, Chi Y, Chen Y, Wang J, Huang J L, Nie F D 2017 New J. Chem. 41 4165Google Scholar

    [14]

    Clark S J, Segallii M, Pickardii C J, Hasnipiii P J, Probertiv M 2005 Z. Kristallogr. Cryst. Mater. 220 567Google Scholar

    [15]

    Banks P, Burgess L, Ruggiero M 2021 Phys. Chem. Chem. Phys. 23 20038Google Scholar

    [16]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X L, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [17]

    Tkatchenko A, Scheffler M 2009 Phys. Rev. Lett. 102 073005Google Scholar

    [18]

    King M D, Buchanan W D, Korter T M 2011 Phys. Chem. Chem. Phys. 13 4250Google Scholar

    [19]

    Jepsen P U, Clark S J 2007 Chem. Phys. Lett. 442 275Google Scholar

    [20]

    Liu Q C, Deng H, Li H Z, Wang M C, Zahng Q, Kang Y, Shang L P 2022 Spectrochim. Acta A 283 121722Google Scholar

  • [1] 陈涛, 李欣. 太赫兹光谱在转基因菜籽油鉴别中的应用: 基于改进蜉蝣算法的支持向量机模型. 物理学报, 2024, 73(5): 058701. doi: 10.7498/aps.73.20231569
    [2] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [3] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [4] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [5] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [6] 吴圣钰, 张耘, 柏红梅, 梁金玲. Co,Zn共掺铌酸锂电子结构和吸收光谱的第一性原理研究. 物理学报, 2018, 67(18): 184209. doi: 10.7498/aps.67.20180735
    [7] 杜建宾, 冯志芳, 韩丽君, 唐延林, 武德起. 外场作用下C12H4Cl4O2的分子结构和电子光谱研究. 物理学报, 2018, 67(22): 223101. doi: 10.7498/aps.67.20181454
    [8] 连宇翔, 戴泽林, 许向东, 谷雨, 李欣荣, 王福, 杨春, 成晓梦, 周华新. 有机电光晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的太赫兹光谱研究. 物理学报, 2017, 66(24): 244211. doi: 10.7498/aps.66.244211
    [9] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [10] 曹青松, 邓开明. X@C20F20(X=He,Ne,Ar,Kr)几何结构和 电子结构的理论研究. 物理学报, 2016, 65(5): 056102. doi: 10.7498/aps.65.056102
    [11] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [12] 李宗宝, 王霞, 樊帅伟. Cu/N表面沉积共掺杂TiO2光催化剂作用机理的理论研究. 物理学报, 2014, 63(15): 157102. doi: 10.7498/aps.63.157102
    [13] 张秀荣, 李扬, 尹琳, 王杨杨. WnNim (n+m=8)团簇的极性和光谱性质的理论研究. 物理学报, 2013, 62(2): 023601. doi: 10.7498/aps.62.023601
    [14] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [15] 莽朝永, 苟高章, 刘彩萍, 吴克琛. 木榄醇手性光谱的密度泛函研究. 物理学报, 2011, 60(4): 043101. doi: 10.7498/aps.60.043101
    [16] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [17] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [18] 陈宣, 彭霞, 邓开明, 肖传云, 胡凤兰, 谭伟石. 笼状Au20内掺M13(M=Fe,Ti)团簇磁性的密度泛函计算研究. 物理学报, 2009, 58(8): 5370-5375. doi: 10.7498/aps.58.5370
    [19] 唐春梅, 朱卫华, 邓开明. 内掺过渡金属富勒烯衍生物Ni@C20H20几何结构、成键和电磁性质的密度泛函计算研究. 物理学报, 2009, 58(7): 4567-4572. doi: 10.7498/aps.58.4567
    [20] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
计量
  • 文章访问数:  829
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-09
  • 修回日期:  2024-08-26
  • 上网日期:  2024-09-04
  • 刊出日期:  2024-10-05

/

返回文章
返回