搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱

索鹏 夏威 张文杰 朱晓青 国家嘉 傅吉波 林贤 郭艳峰 马国宏

引用本文:
Citation:

准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱

索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏

Quasi-two-dimensional van der Waals semiconducting magnet CrSiTe3 studied by using THz spectroscopy

Suo Peng, Xia Wei, Zhang Wen-Jie, Zhu Xiao-Qing, Guo Jia-Jia, Fu Ji-Bo, Lin Xian, Guo Yan-Feng, Ma Guo-Hong
PDF
HTML
导出引用
  • 准二维范德瓦耳斯磁性材料CrSiTe3同时具有本征磁性与半导体能带结构, 在光电子学和纳米自旋电子学领域中具有广泛的应用, 近年来吸引了广大科研工作者的兴趣. 利用超快太赫兹光谱技术, 本文对准二维范德瓦耳斯铁磁半导体CrSiTe3进行了系统的研究, 包括太赫兹时域光谱, 光抽运-太赫兹探测光谱及太赫兹发射光谱. 实验结果表明, 样品的太赫兹电导率随温度的变化表现得十分稳定, 且样品ab面对太赫兹波的响应呈现为各向同性; 800 nm光抽运后的光生载流子表现为一种双指数形式的弛豫变化, 复光电导率可以用Drude-Smith模型很好地拟合, 光载流子的弛豫过程由电子-空穴对的复合所主导; 飞秒脉冲入射到样品表面后可以产生太赫兹辐射, 且具有0—2 THz的带宽. 本文给出了CrSiTe3在光学及太赫兹波段的光谱, 为其在电子及光电子器件方面的设计和优化提供了借鉴与参考.
    Quasi-two-dimensional van der Waals ferromagnetic semiconductor CrSiTe3 with wide potential applications in optoelectronics and nanospintronics has aroused the immense interest of researchers due to the coexistence of intrinsic magnetism and semiconductivity. By combining untrafast femtosecond laser and terahertz spectroscopy, including terahertz time-domain spectroscopy, optical pump-terahertz probe spectroscopy and terahertz emission spectroscopy, we carry out systematic investigation into the van der Waals ferromagnetic semiconductor CrSiTe3 crystal. The experimental results indicate that the conductivity of the sample is robust against the temperature change and isotropic terahertz transmission in the ab-plane. Moreover, it is also observed that the photocarriers induced by 800 nm optical pump exhibit a relaxation in the biexponential form and the complex photoconductivity can be well reproduced by the Drude-Smith model. The main relaxation channel of photocarriers is the recombination of electron-hole pairs. With femtosecond pulse illuminating the surface of sample, a strong terahertz radiation signal with a broad band of 0–2 THz is observed. The present study provides the responses of CrSiTe3 to optical and terahertz frequency and offers crucial information for the future design of CrSiTe3-based electronic and optoelectronic devices.
      通信作者: 马国宏, ghma@staff.shu.edu.cn
      Corresponding author: Ma Guo-Hong, ghma@staff.shu.edu.cn
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509Google Scholar

    [3]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotech. 9 768Google Scholar

    [4]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [5]

    Liu B, Zou Y, Zhang L, Zhou S, Wang Z, Wang W, Qu Z, Zhang Y 2016 Sci. Rep. 6 33873Google Scholar

    [6]

    Gong C, Zhang X 2019 Science 363 706

    [7]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [8]

    Li H, Ruan S, Zeng Y J 2019 Adv. Mater. 31 e1900065Google Scholar

    [9]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [10]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [11]

    Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C 2019 Science 366 983Google Scholar

    [12]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [13]

    Lin M-W, Zhuang H L, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, Xiao K 2016 J. Mater. Chem. C 4 315Google Scholar

    [14]

    Casto L D, Clune A. J, Yokosuk M O, Musfeldt J L, Williams T J, Zhuang H L, Lin M-W, Xiao K, Hennig R G, Sales B C, Yan J-Q, Mandrus D 2015 APL Mater. 3 041515Google Scholar

    [15]

    Xie Q, Liu Y, Wu M, Lu H, Wang W, He L, Wu X 2019 Mater. Lett. 246 60Google Scholar

    [16]

    Milosavljević A, Šolajić A, Pešić J, Liu Y, Petrovic C, Lazarević N, Popović Z V 2018 Phys. Rev. B 98 104306Google Scholar

    [17]

    Zhang J, Cai X, Xia W, Liang A, Huang J, Wang C, Yang L, Yuan H, Chen Y, Zhang S, Guo Y, Liu Z, Li G 2019 Phys. Rev. Lett. 123 047203Google Scholar

    [18]

    Han P, Wang X, Zhang Y 2019 Adv. Opt. Mater. 8 1900533

    [19]

    Guo J, Cheng L, Ren Z, Zhang W, Lin X, Jin Z, Cao S, Sheng Z, Ma G 2020 J. Phys. Condens. Matter 32 185401Google Scholar

    [20]

    Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J, Xu X 2019 J. Phys. Condens. Matter 31 153001Google Scholar

    [21]

    Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y P, Zhang W L, Su Y L, Chen X, Weng H, Kharzeev D E, Liu M K, Qi J 2020 Nat. Commun. 11 720Google Scholar

    [22]

    Xing X, Zhao L, Zhang Z, Liu X, Zhang K, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z, Xu J, Ma Guo 2017 J. Phys. Chem. C 121 20451Google Scholar

    [23]

    Lui C H, Frenzel A J, Pilon D V, Lee Y-H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [24]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Guo H C, Liu W M, Tang S H 2007 J. Appl. Phys. 102 033105Google Scholar

    [27]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562Google Scholar

    [28]

    Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Elorza A Z, Bonn M, Levitov L S, Koppens F H L 2013 Nat. Phys. 9 248Google Scholar

    [29]

    Zhang W, Yang Y, Suo P, Zhao W, Guo J, Lu Q, Lin X, Jin Z, Wang L, Chen G, Xiu F, Liu W, Zhang C, Ma G 2019 Appl. Phys. Lett. 114 221102Google Scholar

    [30]

    Heyman J N, Coates N, Reinhardt A, Strasser G 2003 Appl. Phys. Lett. 83 5476Google Scholar

    [31]

    Barnes M E, Berry S A, Gow P, McBryde D, Daniell G J, Beere H E, Ritchie D A, Apostolopoulos V 2013 Opt. Express 21 16263Google Scholar

    [32]

    Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M 1994 Appl. Phys. Lett. 64 1324Google Scholar

    [33]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Munzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [34]

    Suo P, Xia W, Zhang W, Zhu X, Fu J, Lin X, Jin Z, Liu W, Guo Y, Ma G 2020 Laser Photonics Rev. 14 2000025Google Scholar

  • 图 1  CST原子结构的 (a) 俯视图和 (b) 侧视图; (c) 时间分辨的超快光抽运-THz探测实验光路示意图; (d) 基于第一性原理计算的CST的能带图及 (e) 对应的态密度

    Fig. 1.  Schematic illustration of the crystal structure of CST seen from (a) the top view and (b) the side view; (c) experimental setup for time-resolved ultrafast optical pump-THz probe spectroscopy; (d) the calculated band structure and (e) density of states of CST single crystal by means of the first-principle with the Vienna ab Initio Simulation Package.

    图 2  (a) 透过CST样品后的THz时域信号 (蓝色) 与没有样品时的参考信号 (红色); (b) 计算的CST在THz波段的折射率

    Fig. 2.  (a) The THz-TDS signal through the sample (blue) and the reference signal (red) without placing sample; (b) the calculated refractive index of CST in THz frequency range.

    图 3  (a) CST温度依赖的THz-TDS及 (b) 经过傅里叶变换后的频谱; 室温下CST晶体方位角0° (c) 和 90° (d)下的3D透射光谱

    Fig. 3.  (a) Temperature dependent THz transmission in time domain and (b) in frequency domain via Fourier transformation; 3D plot of THz transmission of CST crystal at the azimuthal angle 0° (c) and 90° (d) at room temperature.

    图 4  (a) 温度5 K、不同抽运功率下的瞬态动力学演化ΔT/T0, 插图为抽运-探测零时间延迟时抽运功率依赖的调制深度, 实线是线性拟合的结果; (b) 通过双指数函数拟合得到的不同抽运功率下的弛豫时间常数; (c) 抽运功率482 μJ/cm2、不同温度下的THz透射响应, 插图为抽运-探测零时间延迟时温度依赖的调制深度; (d) 通过双指数函数拟合得到的不同温度下的弛豫时间常数

    Fig. 4.  (a) The transient dynamics evolution ΔT/T0 under various pump fluence at 5 K, inset gives the fluence dependent modulation depth at the delay time of zero, and the solid line is linear fitting; (b) the decay time constants obtained from biexponential function fitting with respect to pump fluence; (c) the THz transmission response at different temperature under pump fluence of 482 μJ/cm2, inset gives the temperature dependent modulation depth at the delay time of zero; (d) the decay time constants obtained from biexponential function fitting at different temperature, the solid lines are guide to the eyes.

    图 5  (a) 抽运功率603 μJ/cm2、不同抽运-探测延迟时间下的频率分辨的复面电导率 (蓝色和红色的空心点), 实线为Drude-Smith模型拟合的结果; (b) 抽运-探测延迟时间2 ps、不同抽运功率下的复面电导率

    Fig. 5.  (a) The complex frequency-resolved sheet photoconductivity (blue and red circle spots) with a fixed pump fluence of 603 μJ/cm2 measured at various pump-probe time delays. The solid lines are the Drude-Smith model fitting; (b) the complex frequency-resolved sheet photoconductivity with a fixed pump-probe time delay of Δt = 2 ps measured at various pump fluence.

    图 6  (a) 透射式THz发射光谱示意图, 入射面为样品的ab面; (b) 功率依赖的THz辐射的峰峰值, 实线为线性拟合的结果; (c) 典型的THz辐射的3D图像, 紫色的线为THz波在时间上的投影, 表明发射的THz波为线偏振的; (d) 图 (c) 中水平和竖直面上的THz波经傅里叶变换后的频谱

    Fig. 6.  (a) Illustration for THz emission spectroscopy with transmission configuration, and the fs pulse is incident on ab-plane of the sample; (b) the peak-to-peak value of THz radiation with respect to the pump fluence, and the solid line represents linear fitting; (c) a typical 3D plot of THz radiation. The purple line shows the projection of the THz wave on time, which indicates the radiant THz wave is linearly polarized; (d) the Fourier transformation spectrum of THz waves corresponding to the horizontal and vertical directions in figure (c).

    表 1  抽运功率603 μJ/cm2、不同抽运-探测延迟时间下, 基于Drude-Smith模型拟合的参数

    Table 1.  The fitting parameters based on the Drude-Smith model at different pump-probe delay time with a excitation fluence of 603 μJ/cm2.

    Delay time/psωp/1010 Hzτ/fsc
    28.62127–0.3338
    57.82109–0.2768
    205.1276–0.2294
    下载: 导出CSV

    表 2  抽运-探测延迟时间Δt = 2 ps、不同抽运功率下, 基于Drude-Smith模型拟合的参数

    Table 2.  The fitting parameters based on the Drude-Smith model under different pump fluence at delay time Δt = 2 ps.

    Fluence/μJ·cm–2ωp/1010 Hzτ/fsc
    2417.3085–0.3212
    3628.3691–0.3076
    4828.50114–0.3929
    下载: 导出CSV
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A 2015 ACS Nano 9 11509Google Scholar

    [3]

    Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D, Seabaugh A, Banerjee S K, Colombo L 2014 Nat. Nanotech. 9 768Google Scholar

    [4]

    Mermin N D, Wagner H 1966 Phys. Rev. Lett. 17 1133Google Scholar

    [5]

    Liu B, Zou Y, Zhang L, Zhou S, Wang Z, Wang W, Qu Z, Zhang Y 2016 Sci. Rep. 6 33873Google Scholar

    [6]

    Gong C, Zhang X 2019 Science 363 706

    [7]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [8]

    Li H, Ruan S, Zeng Y J 2019 Adv. Mater. 31 e1900065Google Scholar

    [9]

    Thiel L, Wang Z, Tschudin M A, Rohner D, Gutiérrez-Lezama I, Ubrig N, Gibertini M, Giannini E, Morpurgo A F, Maletinsky P 2019 Science 364 973Google Scholar

    [10]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [11]

    Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, Gao C 2019 Science 366 983Google Scholar

    [12]

    Li X, Yang J 2014 J. Mater. Chem. C 2 7071Google Scholar

    [13]

    Lin M-W, Zhuang H L, Yan J, Ward T Z, Puretzky A A, Rouleau C M, Gai Z, Liang L, Meunier V, Sumpter B G, Ganesh P, Kent P R C, Geohegan D B, Mandrus D G, Xiao K 2016 J. Mater. Chem. C 4 315Google Scholar

    [14]

    Casto L D, Clune A. J, Yokosuk M O, Musfeldt J L, Williams T J, Zhuang H L, Lin M-W, Xiao K, Hennig R G, Sales B C, Yan J-Q, Mandrus D 2015 APL Mater. 3 041515Google Scholar

    [15]

    Xie Q, Liu Y, Wu M, Lu H, Wang W, He L, Wu X 2019 Mater. Lett. 246 60Google Scholar

    [16]

    Milosavljević A, Šolajić A, Pešić J, Liu Y, Petrovic C, Lazarević N, Popović Z V 2018 Phys. Rev. B 98 104306Google Scholar

    [17]

    Zhang J, Cai X, Xia W, Liang A, Huang J, Wang C, Yang L, Yuan H, Chen Y, Zhang S, Guo Y, Liu Z, Li G 2019 Phys. Rev. Lett. 123 047203Google Scholar

    [18]

    Han P, Wang X, Zhang Y 2019 Adv. Opt. Mater. 8 1900533

    [19]

    Guo J, Cheng L, Ren Z, Zhang W, Lin X, Jin Z, Cao S, Sheng Z, Ma G 2020 J. Phys. Condens. Matter 32 185401Google Scholar

    [20]

    Huang Y, Yao Z, He C, Zhu L, Zhang L, Bai J, Xu X 2019 J. Phys. Condens. Matter 31 153001Google Scholar

    [21]

    Gao Y, Kaushik S, Philip E J, Li Z, Qin Y, Liu Y P, Zhang W L, Su Y L, Chen X, Weng H, Kharzeev D E, Liu M K, Qi J 2020 Nat. Commun. 11 720Google Scholar

    [22]

    Xing X, Zhao L, Zhang Z, Liu X, Zhang K, Yu Y, Lin X, Chen H Y, Chen J Q, Jin Z, Xu J, Ma Guo 2017 J. Phys. Chem. C 121 20451Google Scholar

    [23]

    Lui C H, Frenzel A J, Pilon D V, Lee Y-H, Ling X, Akselrod G M, Kong J, Gedik N 2014 Phys. Rev. Lett. 113 166801Google Scholar

    [24]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [25]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [26]

    Guo H C, Liu W M, Tang S H 2007 J. Appl. Phys. 102 033105Google Scholar

    [27]

    Dorney T D, Baraniuk R G, Mittleman D M 2001 J. Opt. Soc. Am. A 18 1562Google Scholar

    [28]

    Tielrooij K J, Song J C W, Jensen S A, Centeno A, Pesquera A, Elorza A Z, Bonn M, Levitov L S, Koppens F H L 2013 Nat. Phys. 9 248Google Scholar

    [29]

    Zhang W, Yang Y, Suo P, Zhao W, Guo J, Lu Q, Lin X, Jin Z, Wang L, Chen G, Xiu F, Liu W, Zhang C, Ma G 2019 Appl. Phys. Lett. 114 221102Google Scholar

    [30]

    Heyman J N, Coates N, Reinhardt A, Strasser G 2003 Appl. Phys. Lett. 83 5476Google Scholar

    [31]

    Barnes M E, Berry S A, Gow P, McBryde D, Daniell G J, Beere H E, Ritchie D A, Apostolopoulos V 2013 Opt. Express 21 16263Google Scholar

    [32]

    Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M 1994 Appl. Phys. Lett. 64 1324Google Scholar

    [33]

    Braun L, Mussler G, Hruban A, Konczykowski M, Schumann T, Wolf M, Munzenberg M, Perfetti L, Kampfrath T 2016 Nat. Commun. 7 13259Google Scholar

    [34]

    Suo P, Xia W, Zhang W, Zhu X, Fu J, Lin X, Jin Z, Liu W, Guo Y, Ma G 2020 Laser Photonics Rev. 14 2000025Google Scholar

  • [1] 陈涛, 李欣. 太赫兹光谱在转基因菜籽油鉴别中的应用: 基于改进蜉蝣算法的支持向量机模型. 物理学报, 2024, 73(5): 058701. doi: 10.7498/aps.73.20231569
    [2] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [3] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [4] 向梅, 凌丰姿, 邓绪兰, 魏洁, 布玛丽亚∙阿布力米提, 张冰. 苯乙炔分子电子激发态超快动力学研究. 物理学报, 2021, 70(5): 053302. doi: 10.7498/aps.70.20201473
    [5] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱. 物理学报, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [6] 布玛丽亚·阿布力米提, 凌丰姿, 邓绪兰, 魏洁, 宋辛黎, 向梅, 张冰. 2-甲基吡嗪分子激发态系间交叉过程的飞秒时间分辨光电子影像研究. 物理学报, 2020, 69(10): 103301. doi: 10.7498/aps.69.20200092
    [7] 张云刚, 刘黄韬, 高强, 朱志峰, 李博, 王永达. 飞秒激光引导高压放电下的SF6等离子体时间分辨光谱特性. 物理学报, 2020, 69(18): 185201. doi: 10.7498/aps.69.20200636
    [8] 连宇翔, 戴泽林, 许向东, 谷雨, 李欣荣, 王福, 杨春, 成晓梦, 周华新. 有机电光晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的太赫兹光谱研究. 物理学报, 2017, 66(24): 244211. doi: 10.7498/aps.66.244211
    [9] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [10] 易涛, 王传珂, 杨进文, 朱效立, 谢常青, 刘慎业. 基于移位双光栅色散元件的X射线谱仪研制. 物理学报, 2016, 65(16): 165201. doi: 10.7498/aps.65.165201
    [11] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [12] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [13] 刘院省, 刘世炳, 宋海英, 何润. 脉冲激光-铜靶等离子体产生及其演化过程的瞬态光谱研究. 物理学报, 2012, 61(4): 044204. doi: 10.7498/aps.61.044204
    [14] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [15] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [16] 宋迎新, 郑卫民, 刘静, 初宁宁, 李素梅. 量子限制效应对δ掺杂GaAs/AlAs多量子阱中铍受主态寿命的影响. 物理学报, 2009, 58(9): 6471-6476. doi: 10.7498/aps.58.6471
    [17] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [18] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [19] 武春红, 刘彭义, 侯林涛, 李艳武. 磷光染料掺杂有机分子发光的能量转移研究. 物理学报, 2008, 57(11): 7317-7321. doi: 10.7498/aps.57.7317
    [20] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究. 物理学报, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
计量
  • 文章访问数:  7744
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 修回日期:  2020-05-25
  • 上网日期:  2020-05-29
  • 刊出日期:  2020-10-20

/

返回文章
返回