搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全反式-胡萝卜素太赫兹光谱的实验及理论研究

闫微 马淼 戴泽林 谷雨 朱宏钊 刘禹彤 许向东 韩守胜 彭勇

引用本文:
Citation:

全反式-胡萝卜素太赫兹光谱的实验及理论研究

闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇

Experimental and theoretical study on terahertz spectra of all-trans -carotene

Yan Wei, Ma Miao, Dai Ze-Lin, Gu Yu, Zhu Hong-Zhao, Liu Yu-Tong, Xu Xiang-Dong, Han Shou-Sheng, Peng Yong
PDF
导出引用
  • 采用傅里叶变换红外光谱技术和太赫兹时域光谱技术,在室温下对全反式-胡萝卜素薄膜进行了光谱测试.据此,详细地指认出全反式-胡萝卜素在太赫兹波段的指纹谱峰,并验证了近期报道的棕树叶的太赫兹光谱结果.运用密度泛函理论的B3LYP方法计算了全反式-胡萝卜素的太赫兹光谱,理论计算结果与实验测量结果基本符合.此外,根据理论计算结果,对实测的太赫兹特征峰的振动模式进行了系统归属.本文研究结果有助于推动有机物的太赫兹光谱规律和太赫兹响应原理等理论与应用研究.
    The -carotene is a short chain polyene molecule containing nine -electron conjugated double-bonds. Because of its special molecular structure, -carotene has been used widely in many fields, including functional materials, optoelectronic devices and biological applications of light collection, light protection, anti-cancer, etc. Recently, new applications of -carotene in generation and detection of terahertz (THz) wave have also attracted great attention. In this work, all-trans -carotene films are prepared by spray coating, and the THz spectra in a wavenumber range of 30-400 cm-1 (a frequency range of 0.9-12 THz) of the as-prepared products are experimentally measured at room temperature by Fourier transform infrared spectroscopy. For comparison, the THz spectra in 0.5-3.0 THz are also characterized at the same temperature by THz time-domain spectroscopy. Based on these measurements, the fingerprint peaks of all-trans -carotene in the THz region are experimentally identified to be located at 54 cm-1 (1.62 THz), 57 cm-1 (1.71 THz), 64 cm-1 (1.91 THz), 77 cm-1 (2.32 THz), 90 cm-1 (2.69 THz), 98 cm-1 (2.95 THz), 115 cm-1 (3.45 THz), 124 cm-1 (3.72 THz), 134 cm-1 (4.02 THz), 170 cm-1 (5.11 THz), 247 cm-1 (7.42 THz), and 279 cm-1 (8.38 THz), respectively. It is worth noting that the recent results about the THz spectra of palm leaves are thus verified. Particularly, the B3 LYP method of density functional theory is further utilized in this work to theoretically simulate the THz spectra of all-trans -carotene molecule. It is revealed that the theoretical simulation results accord well with those experimentally measured data. In addition, we also find that the absorption peaks are caused by the torsion, deformation and rocking vibration of the molecules. Accordingly, the vibrational modes of the measured THz characteristic peaks at 148 cm-1 (4.44 THz), 132 cm-1 (3.96 THz), 115 cm-1 (3.45 THz), 76 cm-1 (2.28 THz) and 52 cm-1 (1.56 THz) are theoretically assigned, which provides a reference to explain the formation mechanism of the THz spectra. The valuable results presented in this work will be helpful for promoting the studies of the THz spectral features and response mechanisms of the organics.
      通信作者: 许向东, xdxu@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61071032,61377063)资助的课题.
      Corresponding author: Xu Xiang-Dong, xdxu@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61071032, 61377063).
    [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2004 Vib. Spectrosc. 35 111

    [3]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [4]

    Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C 2003 J. Biol. Phys. 29 89

    [5]

    Taday P F, Bradley I V, Arnone D D 2003 J. Biol. Phys. 29 109

    [6]

    Guo H, He M, Huang R, Qi W, Guo W H, Su R X, He Z M 2014 RSC Adv. 4 57945

    [7]

    Schlcker S, Szeghalmi A, Schmitt M, Popp J, Kiefer W 2003 J. Raman Spectrosc. 34 413

    [8]

    Ziegler R G 1991 Am. J. Clin. Nutr. 53 251S

    [9]

    Sugisaki M, Fujiwara M, Nair S V, Ruda H E, Cogdell R J, Hashimoto H 2009 Phys. Rev. B 80 035118

    [10]

    Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698

    [11]

    Yanagi K, Miyata Y, Kataura H 2006 Adv. Mater. 18 437

    [12]

    Zuo J, Zhang L L, Yu F, Zhang Z W, Zhang C L 2010 Proc. SPIE Beijing, China, October 18-22, 2010 p785439

    [13]

    Zhang L W, Zuo J, Zhang C L 2014 Spectrosc. Spect. Anal. 34 405 (in Chinese)[张磊巍, 左剑, 张存林2014光谱学与光谱分析34 405]

    [14]

    Liu Y K, Liu Y T, Xu X D, Yan W, Ma M, Zhu H Z, Ma C Q, Zou R J, Din L, Luo M J 2015 Acta Phys. Sin. 64 068701 (in Chinese)[刘一客, 刘禹彤, 许向东, 闫微, 马淼, 朱宏钊, 马春前, 邹瑞娇, 丁廉, 罗梦佳2015物理学报64 068701]

    [15]

    Hu Y Q, Chen Y J, Li H H, Wang H S 2012 Spectrosc. Spect. Anal. 32 339 (in Chinese)[胡燕琴, 陈玉静, 李慧华, 王海水2012光谱学与光谱分析32 339]

    [16]

    Naftaly M, Miles R E 2007 P. IEEE 95 1658

    [17]

    Zhang T J, Cai J H, Zhou Z K 2008 Spectrosc. Spect. Anal. 28 721 (in Chinese)[张同军, 蔡晋辉, 周泽魁2008光谱学与光谱分析28 721]

    [18]

    Mickan S P, Lee K S, Lu T M, Munch J, Abbott D, Zhang X C 2002 Microelectron. J. 12 1033

    [19]

    Li Y B, Zheng Y Y, Wang W N 2007 J. Capital Normal Univ.:Nat. Sci. Ed. 28 39 (in Chinese)[李元波, 郑盈盈, 王卫宁2007首都师范大学学报:自然科学版28 39]

    [20]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2003 Appl. Phys. Lett. 82 2350

    [21]

    Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J, Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese)[马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨2009物理学报58 6101]

    [22]

    Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R R 2004 Biophys. J. 86 164

  • [1]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26

    [2]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2004 Vib. Spectrosc. 35 111

    [3]

    Markelz A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [4]

    Globus T R, Woolard D L, Khromova T, Crowe T W, Bykhovskaia M, Gelmont B L, Hesler J, Samuels A C 2003 J. Biol. Phys. 29 89

    [5]

    Taday P F, Bradley I V, Arnone D D 2003 J. Biol. Phys. 29 109

    [6]

    Guo H, He M, Huang R, Qi W, Guo W H, Su R X, He Z M 2014 RSC Adv. 4 57945

    [7]

    Schlcker S, Szeghalmi A, Schmitt M, Popp J, Kiefer W 2003 J. Raman Spectrosc. 34 413

    [8]

    Ziegler R G 1991 Am. J. Clin. Nutr. 53 251S

    [9]

    Sugisaki M, Fujiwara M, Nair S V, Ruda H E, Cogdell R J, Hashimoto H 2009 Phys. Rev. B 80 035118

    [10]

    Ostroumov E E, Muller M G, Reus M, Holzwarth A R 2011 J. Phys. Chem. A 115 3698

    [11]

    Yanagi K, Miyata Y, Kataura H 2006 Adv. Mater. 18 437

    [12]

    Zuo J, Zhang L L, Yu F, Zhang Z W, Zhang C L 2010 Proc. SPIE Beijing, China, October 18-22, 2010 p785439

    [13]

    Zhang L W, Zuo J, Zhang C L 2014 Spectrosc. Spect. Anal. 34 405 (in Chinese)[张磊巍, 左剑, 张存林2014光谱学与光谱分析34 405]

    [14]

    Liu Y K, Liu Y T, Xu X D, Yan W, Ma M, Zhu H Z, Ma C Q, Zou R J, Din L, Luo M J 2015 Acta Phys. Sin. 64 068701 (in Chinese)[刘一客, 刘禹彤, 许向东, 闫微, 马淼, 朱宏钊, 马春前, 邹瑞娇, 丁廉, 罗梦佳2015物理学报64 068701]

    [15]

    Hu Y Q, Chen Y J, Li H H, Wang H S 2012 Spectrosc. Spect. Anal. 32 339 (in Chinese)[胡燕琴, 陈玉静, 李慧华, 王海水2012光谱学与光谱分析32 339]

    [16]

    Naftaly M, Miles R E 2007 P. IEEE 95 1658

    [17]

    Zhang T J, Cai J H, Zhou Z K 2008 Spectrosc. Spect. Anal. 28 721 (in Chinese)[张同军, 蔡晋辉, 周泽魁2008光谱学与光谱分析28 721]

    [18]

    Mickan S P, Lee K S, Lu T M, Munch J, Abbott D, Zhang X C 2002 Microelectron. J. 12 1033

    [19]

    Li Y B, Zheng Y Y, Wang W N 2007 J. Capital Normal Univ.:Nat. Sci. Ed. 28 39 (in Chinese)[李元波, 郑盈盈, 王卫宁2007首都师范大学学报:自然科学版28 39]

    [20]

    Shen Y C, Upadhya P C, Linfield E H, Davies A G 2003 Appl. Phys. Lett. 82 2350

    [21]

    Ma J L, Xu K J, Li Z, Jin B B, Fu R, Zhang C H, Ji Z M, Zhang C, Chen Z X, Chen J, Wu P H 2009 Acta Phys. Sin. 58 6101 (in Chinese)[马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨2009物理学报58 6101]

    [22]

    Yu B, Zeng F, Yang Y, Xing Q, Chechin A, Xin X, Zeylikovich I, Alfano R R 2004 Biophys. J. 86 164

  • [1] 施斌, 袁荔, 唐天宇, 陆利敏, 赵先豪, 魏晓楠, 唐延林. 特丁基对苯二酚的光谱及密度泛函研究. 物理学报, 2021, 70(5): 053102. doi: 10.7498/aps.70.20201555
    [2] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [3] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [4] 彭婕, 张嗣杰, 王苛, DoveMartin. 经式8-羟基喹啉铝的光谱与激发性质密度泛函. 物理学报, 2020, 69(2): 023101. doi: 10.7498/aps.69.20191453
    [5] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂. 对甲氧基苯甲腈的单色共振双光子电离光谱. 物理学报, 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [6] 连宇翔, 戴泽林, 许向东, 谷雨, 李欣荣, 王福, 杨春, 成晓梦, 周华新. 有机电光晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的太赫兹光谱研究. 物理学报, 2017, 66(24): 244211. doi: 10.7498/aps.66.244211
    [7] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [8] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [9] 张秀荣, 李扬, 尹琳, 王杨杨. WnNim (n+m=8)团簇的极性和光谱性质的理论研究. 物理学报, 2013, 62(2): 023601. doi: 10.7498/aps.62.023601
    [10] 张季, 张德明, 王迪, 张庆礼, 孙敦陆, 殷绍唐. Bi2ZnOB2O6单晶偏振拉曼光谱. 物理学报, 2013, 62(23): 237802. doi: 10.7498/aps.62.237802
    [11] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究. 物理学报, 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [12] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [13] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [14] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [15] 莽朝永, 苟高章, 刘彩萍, 吴克琛. 木榄醇手性光谱的密度泛函研究. 物理学报, 2011, 60(4): 043101. doi: 10.7498/aps.60.043101
    [16] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [17] 周晶晶, 陈云贵, 吴朝玲, 肖艳, 高涛. NaAlH4 表面Ti催化空间构型和X射线吸收光谱: Car-Parrinello分子动力学和密度泛函理论研究. 物理学报, 2010, 59(10): 7452-7457. doi: 10.7498/aps.59.7452
    [18] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [19] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [20] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响. 物理学报, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
计量
  • 文章访问数:  3352
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-22
  • 修回日期:  2016-10-24
  • 刊出日期:  2017-02-05

全反式-胡萝卜素太赫兹光谱的实验及理论研究

  • 1. 电子科技大学光电信息学院, 成都 610054
  • 通信作者: 许向东, xdxu@uestc.edu.cn
    基金项目: 国家自然科学基金(批准号:61071032,61377063)资助的课题.

摘要: 采用傅里叶变换红外光谱技术和太赫兹时域光谱技术,在室温下对全反式-胡萝卜素薄膜进行了光谱测试.据此,详细地指认出全反式-胡萝卜素在太赫兹波段的指纹谱峰,并验证了近期报道的棕树叶的太赫兹光谱结果.运用密度泛函理论的B3LYP方法计算了全反式-胡萝卜素的太赫兹光谱,理论计算结果与实验测量结果基本符合.此外,根据理论计算结果,对实测的太赫兹特征峰的振动模式进行了系统归属.本文研究结果有助于推动有机物的太赫兹光谱规律和太赫兹响应原理等理论与应用研究.

English Abstract

参考文献 (22)

目录

    /

    返回文章
    返回