搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析

孙怡雯 钟俊兰 左剑 张存林 但果

引用本文:
Citation:

血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析

孙怡雯, 钟俊兰, 左剑, 张存林, 但果

Principal component analysis of terahertz spectrum on hemagglutinin protein and its antibody

Sun Yi-Wen, Zhong Jun-Lan, Zuo Jian, Zhang Cun-Lin, Dan Guo
PDF
导出引用
  • 采用太赫兹时域光谱系统, 测量了7种不同浓度的血凝素蛋白及其与特异性抗体、无关抗体对照组反应的透射光谱, 采用光谱预处理及主成分分析法, 对多个太赫兹光谱参数进行分析. 结果显示, 主成分分析在数据降维的同时, 可以突出数据的主要变化趋势; 在原始变量相关性一致的条件下, 约化吸收截面与血凝素蛋白浓度之间表现出最强的相关性, 而介电损耗角正切值更适合于对血凝素蛋白-抗体复合物的聚类效果进行定性分析. 该研究表明主成分分析法对于太赫兹生物光谱的分析及进一步研究蛋白质的结构和功能具有重要的指导意义.
    One has proved that the collective structural vibrational modes of proteins are in the terahertz (THz) frequency range. These frequencies relate to the polypeptide backbone and are thought to be essential for conformational dynamics necessary for protein function. Hemagglutinin (HA) is the main surface glycoprotein of the influenza A virus. The H9N2 subtype influenza A virus is recognized as the most possible pandemic strain as it crosses the species barrier, infects swine and humans. In this paper we use principal component analysis (PCA) to study the 7 different concentrations dependent terahertz spectra of hemagglutinin proteins, and detect the binding interaction of HA with the broadly neutralizing monoclonal antibody F10 in liquid phase. Spectrum pretreatment and band selection play a vital role in the THz spectroscopic analysis due to the fact that the original spectrum contains a large amount of interference information. In order to compress variables and extract useful information, we use a variety of pretreatment methods, such as second derivative, multiplicative scatter correction (MSC), least square polynomial fitting derivation, standard normalization, smoothing, moving window median filtering before PCA analysis. We even consider MSC + smoothing + SG second derivative + median filtering as the optimized pretreatment method finally. THz spectrum parameters including refractive index, absorption coefficient, reduced absorption cross-section and dielectric loss angle tangent are calculated in a frequency range of 0.1-1.4 THz for comparison. The results indicate that the reduced absorption cross-section presents the highest correlation response to the concentration variation of HA protein, and the dielectric loss angle tangent appears to be more appropriate for qualitative analysis of HA-antibody binding interaction. PCA method provides a feasible and effective way to find the sensitive parameters for further analyzing the function of protein and the antigen-antibody interaction using terahertz spectrum, whereas an appropriate pretreatment method is required.
    • 基金项目: 国家自然科学基金(批准号: 61205092, 11204190)、广东省自然科学基金(批准号: S2012040007668)和广东省教育厅高校优秀青年创新人才培养计划(批准号: 2012LYM_0116)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61205092, 11204190), the Guangdong Natural Science Foundation, China (Grant No. S2012040007668), and the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. 2012LYM_0116).
    [1]

    Liu S G, Zhong R B 2009 JESTC 38 481 (in Chinese) [刘盛纲, 钟任斌 2009 电子科技大学学报 38 481]

    [2]

    Brucherseifer M, Nagel M, Haring B P, Kurz H, Bosserhoff A, Büttner R 2007 Appl. Phys. Lett. 77 4049

    [3]

    Mickan S P, Menikh A, Liu H, Mannella C A, MacColl R, Abbott D, Munch J, Zhang X C 2002 Phys. Med. Biol. 147 3789

    [4]

    Fischer B M, Walther M, Jepsen P U 2002 Phys. Med. Biol. 47 3807

    [5]

    Kindt J T, Shmuttenmaer C A 1996 J. Phys. Chem. 100 10373

    [6]

    Tian L, Zhou Q L, Zhao, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q, Zhang C L 2011 Chin. Phys. B 20 010703

    [7]

    Dong C, Bao R M, Zhao K, Xu C H, Jin W J Zhong S X 2014 Chin. Phys. B 23 127802

    [8]

    Shi Y L, Zhou Q L, Zhang C L 2009 Chin. Phys. B 18 4515

    [9]

    Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804

    [10]

    Zhao H W, Ge M, Wang W F 2005 Chemistry 68 87 (in Chinese) [赵红卫, 葛敏, 王文峰 2005 化学通报 68 87]

    [11]

    Markelz A G, Whitmire S, Hillebrecht J 2002 Phys. Med. Biol. 47 3797

    [12]

    Markel A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [13]

    Nagel M, Bolivar P H, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R 2002 Appl. Phys. Lett. 80 154

    [14]

    Xu J, Plaxco K W, Allen S J 2006 Protein Sci. 15 1175

    [15]

    Jianhua S, William C H, Sandra P, Wei G, Daniel A 2009 Nat. Struct. Mol. Biol. 16 265

    [16]

    White J M, Hoffman L R, Arevalo J H, Wilson I A 1997 In Structural Biology of Viruses (New York: Oxford University Press) p80

    [17]

    Pickwell E, Cole B E, Fitzgerald A J, Wallace V P, Pepper M 2004 Appl. Phys. Lett. 84 2190

    [18]

    Sun Y W, Zhang Y T, Pickwell-MacPherson E 2011 Biophys J. 100 225

    [19]

    Smith L I 2002 A tutorial on Principal Components Analysis (Vol.51) (USA: Cornell University), p52

    [20]

    Pearson K 1901 Philos. Mag. 2 559

    [21]

    Cao B H, Fan M B, Jing S Y 2010 Spectrosc. Spect. Anal. 30 1748 (in Chinese) [曹丙花, 范孟豹, 荆胜羽 2010 光谱学与光谱分析 30 1748]

    [22]

    Sun Y W, Zhu Z, Chen S, Balakrishnan J, Abbott D 2012 PLoS ONE 7 e50306

    [23]

    Kawaguchi S, Kambara O, Shibata M, Kandori H, Tominaga K 2010 Phys. Chem. Chem. Phys. 12 10255

  • [1]

    Liu S G, Zhong R B 2009 JESTC 38 481 (in Chinese) [刘盛纲, 钟任斌 2009 电子科技大学学报 38 481]

    [2]

    Brucherseifer M, Nagel M, Haring B P, Kurz H, Bosserhoff A, Büttner R 2007 Appl. Phys. Lett. 77 4049

    [3]

    Mickan S P, Menikh A, Liu H, Mannella C A, MacColl R, Abbott D, Munch J, Zhang X C 2002 Phys. Med. Biol. 147 3789

    [4]

    Fischer B M, Walther M, Jepsen P U 2002 Phys. Med. Biol. 47 3807

    [5]

    Kindt J T, Shmuttenmaer C A 1996 J. Phys. Chem. 100 10373

    [6]

    Tian L, Zhou Q L, Zhao, Shi Y L, Zhao D M, Zhao S Q, Zhao H, Bao R M, Zhu S M, Miao Q, Zhang C L 2011 Chin. Phys. B 20 010703

    [7]

    Dong C, Bao R M, Zhao K, Xu C H, Jin W J Zhong S X 2014 Chin. Phys. B 23 127802

    [8]

    Shi Y L, Zhou Q L, Zhang C L 2009 Chin. Phys. B 18 4515

    [9]

    Leng W X, Ge L N, Xu S S, Zhan H L, Zhao K 2014 Chin. Phys. B 23 107804

    [10]

    Zhao H W, Ge M, Wang W F 2005 Chemistry 68 87 (in Chinese) [赵红卫, 葛敏, 王文峰 2005 化学通报 68 87]

    [11]

    Markelz A G, Whitmire S, Hillebrecht J 2002 Phys. Med. Biol. 47 3797

    [12]

    Markel A G, Roitberg A, Heilweil E J 2000 Chem. Phys. Lett. 320 42

    [13]

    Nagel M, Bolivar P H, Brucherseifer M, Kurz H, Bosserhoff A, Büttner R 2002 Appl. Phys. Lett. 80 154

    [14]

    Xu J, Plaxco K W, Allen S J 2006 Protein Sci. 15 1175

    [15]

    Jianhua S, William C H, Sandra P, Wei G, Daniel A 2009 Nat. Struct. Mol. Biol. 16 265

    [16]

    White J M, Hoffman L R, Arevalo J H, Wilson I A 1997 In Structural Biology of Viruses (New York: Oxford University Press) p80

    [17]

    Pickwell E, Cole B E, Fitzgerald A J, Wallace V P, Pepper M 2004 Appl. Phys. Lett. 84 2190

    [18]

    Sun Y W, Zhang Y T, Pickwell-MacPherson E 2011 Biophys J. 100 225

    [19]

    Smith L I 2002 A tutorial on Principal Components Analysis (Vol.51) (USA: Cornell University), p52

    [20]

    Pearson K 1901 Philos. Mag. 2 559

    [21]

    Cao B H, Fan M B, Jing S Y 2010 Spectrosc. Spect. Anal. 30 1748 (in Chinese) [曹丙花, 范孟豹, 荆胜羽 2010 光谱学与光谱分析 30 1748]

    [22]

    Sun Y W, Zhu Z, Chen S, Balakrishnan J, Abbott D 2012 PLoS ONE 7 e50306

    [23]

    Kawaguchi S, Kambara O, Shibata M, Kandori H, Tominaga K 2010 Phys. Chem. Chem. Phys. 12 10255

  • [1] 陈涛, 李欣. 太赫兹光谱在转基因菜籽油鉴别中的应用: 基于改进蜉蝣算法的支持向量机模型. 物理学报, 2024, 73(5): 058701. doi: 10.7498/aps.73.20231569
    [2] 刘泉澄, 杨富, 张祺, 段勇威, 邓琥, 尚丽平. 太赫兹光谱学研究CL-20/MTNP共晶振动特性. 物理学报, 2024, 73(19): 193201. doi: 10.7498/aps.73.20240944
    [3] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [4] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [5] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [6] 王晨, 夏威, 索鹏, 王伟, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯本征铁磁半导体CrGeTe3的THz光谱. 物理学报, 2022, 71(23): 237303. doi: 10.7498/aps.71.20221586
    [7] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [8] 黄志伟, 杨宏宇, 翟峰, 陆肖励, 卢军强, 吴健. 非监督学习高维多体波函数矢量轨迹所在低维子空间. 物理学报, 2021, 70(24): 247101. doi: 10.7498/aps.70.20210697
    [9] 索鹏, 夏威, 张文杰, 朱晓青, 国家嘉, 傅吉波, 林贤, 郭艳峰, 马国宏. 准二维范德瓦耳斯磁性半导体CrSiTe3的THz光谱. 物理学报, 2020, 69(20): 207302. doi: 10.7498/aps.69.20200682
    [10] 连宇翔, 戴泽林, 许向东, 谷雨, 李欣荣, 王福, 杨春, 成晓梦, 周华新. 有机电光晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的太赫兹光谱研究. 物理学报, 2017, 66(24): 244211. doi: 10.7498/aps.66.244211
    [11] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [12] 鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志. 基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究. 物理学报, 2015, 64(11): 114206. doi: 10.7498/aps.64.114206
    [13] 李凌, 金贞兰, 李斌. 基于因子分析方法的相位同步脑电源的时-空动力学分析. 物理学报, 2011, 60(4): 048703. doi: 10.7498/aps.60.048703
    [14] 侯碧辉, 菅彦珍, 王雅丽, 张尔攀, 傅佩珍, 汪力, 钟任斌. PbB4O7 晶体的太赫兹光谱和软光学声子. 物理学报, 2010, 59(7): 4640-4645. doi: 10.7498/aps.59.4640
    [15] 马金龙, 徐开俊, 李哲, 金飚兵, 傅荣, 张彩虹, 吉争鸣, 张仓, 陈兆旭, 陈健, 吴培亨. D-,L-和DL-奥硝唑随温度变化的太赫兹光谱. 物理学报, 2009, 58(9): 6101-6107. doi: 10.7498/aps.58.6101
    [16] 王娜, 陈克安, 黄凰. 水下噪声听觉属性的主观评价与分析. 物理学报, 2009, 58(10): 7330-7338. doi: 10.7498/aps.58.7330
    [17] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [18] 王卫宁, 李元波, 岳伟伟. 组氨酸和精氨酸的太赫兹光谱研究. 物理学报, 2007, 56(2): 781-785. doi: 10.7498/aps.56.781
    [19] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
    [20] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究. 物理学报, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
计量
  • 文章访问数:  7461
  • PDF下载量:  406
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-07
  • 修回日期:  2015-03-23
  • 刊出日期:  2015-08-05

/

返回文章
返回