搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对甲氧基苯甲腈的单色共振双光子电离光谱

李鑫 赵岩 靳颖辉 王晓锐 余谢秋 武媚 韩昱行 杨勇刚 李昌勇 贾锁堂

引用本文:
Citation:

对甲氧基苯甲腈的单色共振双光子电离光谱

李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂

One color resonance two-photon ionization spectra of p-methoxybenzonitrile

Li Xin, Zhao Yan, Jin Ying-Hui, Wang Xiao-Rui, Yu Xie-Qiu, Wu Mei, Han Yu-Xing, Yang Yong-Gang, Li Chang-Yong, Jia Suo-Tang
PDF
导出引用
  • 对甲氧基苯甲腈是一种重要的化学化工原料,本文采用超声分子束技术和共振多光子电离方法获得了对甲氧基苯甲腈的单色共振双光子电离光谱,基态S0到电子激发态S1的00跃迁被确定为(355492)cm-1,结合含时密度泛函理论计算结果对观察到的光谱进行了振动模式标识和描述.实验发现呼吸振动模非常易于激活,其基频和二次泛频光谱很强,三次泛频也可明确标识,观察到大量呼吸振动与其他正则模的结合振动,这是对甲氧基苯甲腈不同于常见的多原子分子的一个重要特性.这些结果为研究对甲氧基苯甲腈的里德堡态、动力学和零动能光谱等提供了重要的参考数据.
    p-methoxybenzonitrile is an important chemical and industrial material which has been widely used in many fields, such as medicine, chemistry, photoelectron, etc. In this paper, we use the technologies of supersonic molecular beam, resonance enhanced multiphoton ionization and time-of-flight mass spectrometer to obtain the high-resolution one color resonance two-photon ionization spectra of p-methoxybenzonitrile in a vibrational wavenumber range of 0-2400 cm-1. In order to analyze the experimental results, the theoretical calculations are performed. The molecular structure, energy, and vibration frequencies at the electronic excited state S1 are computed with time-dependent density functional theory at the level of B3PW91/6-311 g++**. According to the calculated results, the observed bands are assigned by the method of Varsanyi and Szoke. The band origin of the S1S0 electronic transition of p-methoxybenzonitrile is determined to be (355492) cm-1. A lot of vibrational bands of the electronic excited state S1 are observed. The results show that the vibrational modes of 9b, 6b, 15 and 1 are very easy to activate in a wavenumber range of 0-800 cm-1. There are also a lot of intense bands in a wavenumber range of 800-1600 cm-1. In addition to the fundamental vibrations, many combined vibrations between breathing and other fundamental vibrations are found. Several vibrations in this range are located at OCH3 and CN group. Most of the bands in a range of 1600-2400 cm-1 correspond to ones in the range of 800-1600 cm-1. Except for the bands appearing at 1664 and 2156 cm-1, which are assigned to 15011301 and (CN) (CN stretching) respectively, the remaining bands in the range of 1600-2400 cm-1 are assigned as the combined vibrations between the breathing and the corresponding modes in the range of 800-1600 cm-1, i.e., the combined vibrations between the breathing overtone and other fundamental modes. Our theoretical calculations show that except for CN stretching vibration at 2162 cm-1, there is no fundamental frequency in a range of 1600-3000 cm-1, which is consistent with our experimental result and assignment. The fundamental of the breathing vibration 11 and its second overtone vibration 12 are very strong. The third overtone frequency 13 can be identified unambiguously. This is an important characteristic of p-methoxybenzonitrile, which is different from that of the usual polyatomic molecule. These results provide important reference for future researches on Rydberg states, chemical kinetics and zero kinetic energy spectroscopy of p-methoxybenzonitrile.
      通信作者: 李昌勇, lichyong@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2012CB921603)、国家自然科学基金(批准号:61378039,61575115,11434007)、长江学者和创新团队发展计划(批准号:IRT13076)和量子光学与光量子器件国家重点实验室建设(批准号:2015012001-20)资助的课题.
      Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61378039, 61575115, 11434007), the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT13076), and the Construction of State Key Laboratory of Quantum Optics and Quantum Optics Devices, China (Grant No. 2015012001-20).
    [1]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449

    [2]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506

    [3]

    Huang J G, Li C Y, Tzeng W B 2005 Chem. Phys. Lett. 414 276

    [4]

    Li C Y, Su H, Tzeng W B 2005 Chem. Phys. Lett. 410 99

    [5]

    Lui Y H, McGlynn S P 1975 J. Mol. Spectrosc. 55 163

    [6]

    Bocharov V N, Bureiko S F, Golubev N S, Shajakhmedov S S 1998 J. Mol. Stuct. 444 57

    [7]

    Fleminga G D, Golsioa I, Aracena A, Celis F, Vera L, Koch R, Campos-Vallette M 2008 Spectrchim. Acta A 71 1074

    [8]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [9]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [10]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [11]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [12]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) pp84-112

    [13]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210]

    [14]

    Zhang Q, Li X, Zhao Y, Yang Y G, Li C Y, Jia S T 2016 Acta Sin. Quan. Opt. 22 115 (in Chinese) [张庆, 李鑫, 赵岩, 杨勇刚, 李昌勇, 贾锁堂 2016 量子光学学报 22 115]

    [15]

    Tzeng W B, Lin J L 1999 J. Phys. Chem. A 103 8612

    [16]

    Wang Y, Yao Z, Feng C L, Liu J H, Ding H B 2012 Acta Phys. Sin. 61 013301 (in Chinese) [王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌 2012 物理学报 61 013301]

    [17]

    Song K, Hayes J M 1989 J. Mol. Spectrosc. 134 82

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc.)

    [19]

    Li C Y, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 044311

    [20]

    Varsanyi G, Szoke S 1969 Vibrational spectra of Benzene Derivatives (New York and London: Academic Press) p129

    [21]

    Varsanyi G 1974 Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Halsred Press) p185

  • [1]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449

    [2]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506

    [3]

    Huang J G, Li C Y, Tzeng W B 2005 Chem. Phys. Lett. 414 276

    [4]

    Li C Y, Su H, Tzeng W B 2005 Chem. Phys. Lett. 410 99

    [5]

    Lui Y H, McGlynn S P 1975 J. Mol. Spectrosc. 55 163

    [6]

    Bocharov V N, Bureiko S F, Golubev N S, Shajakhmedov S S 1998 J. Mol. Stuct. 444 57

    [7]

    Fleminga G D, Golsioa I, Aracena A, Celis F, Vera L, Koch R, Campos-Vallette M 2008 Spectrchim. Acta A 71 1074

    [8]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301

    [9]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301

    [10]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303

    [11]

    Kroto H W, Heath J R, OBrien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [12]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) pp84-112

    [13]

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210 (in Chinese) [姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210]

    [14]

    Zhang Q, Li X, Zhao Y, Yang Y G, Li C Y, Jia S T 2016 Acta Sin. Quan. Opt. 22 115 (in Chinese) [张庆, 李鑫, 赵岩, 杨勇刚, 李昌勇, 贾锁堂 2016 量子光学学报 22 115]

    [15]

    Tzeng W B, Lin J L 1999 J. Phys. Chem. A 103 8612

    [16]

    Wang Y, Yao Z, Feng C L, Liu J H, Ding H B 2012 Acta Phys. Sin. 61 013301 (in Chinese) [王燕, 姚志, 冯春雷, 刘佳宏, 丁洪斌 2012 物理学报 61 013301]

    [17]

    Song K, Hayes J M 1989 J. Mol. Spectrosc. 134 82

    [18]

    Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, et al. 2009 Gaussian 09 (Pittsburgh: Gaussian Inc.)

    [19]

    Li C Y, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 044311

    [20]

    Varsanyi G, Szoke S 1969 Vibrational spectra of Benzene Derivatives (New York and London: Academic Press) p129

    [21]

    Varsanyi G 1974 Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Halsred Press) p185

  • [1] 隋国民, 严桂俊, 杨光, 张宝, 冯亚青. 二维氟代苯甲胺钙钛矿结构和光电性能的理论研究. 物理学报, 2022, 71(20): 208801. doi: 10.7498/aps.71.20220802
    [2] 李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2022, 71(2): 023301. doi: 10.7498/aps.71.20211659
    [3] 赵岩, 李娜, 党思远, 杨国全, 李昌勇. 对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱. 物理学报, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [4] 李娜, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211659
    [5] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [6] 汪小丽, 姚关心, 杨新艳, 秦正波, 郑贤锋, 崔执凤. 甲胺分子的紫外光解离动力学实验研究. 物理学报, 2018, 67(24): 243301. doi: 10.7498/aps.67.20181731
    [7] 闫微, 马淼, 戴泽林, 谷雨, 朱宏钊, 刘禹彤, 许向东, 韩守胜, 彭勇. 全反式-胡萝卜素太赫兹光谱的实验及理论研究. 物理学报, 2017, 66(3): 037801. doi: 10.7498/aps.66.037801
    [8] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [9] 刘玉柱, Gerber Thomas, Knopp Gregor. 利用强场多光子电离技术实现对多原子分子离子振动量子态的光学操控. 物理学报, 2014, 63(24): 244208. doi: 10.7498/aps.63.244208
    [10] 张季, 张德明, 王迪, 张庆礼, 孙敦陆, 殷绍唐. Bi2ZnOB2O6单晶偏振拉曼光谱. 物理学报, 2013, 62(23): 237802. doi: 10.7498/aps.62.237802
    [11] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. BaBPO5晶体晶格振动光谱研究与第一性原理计算. 物理学报, 2013, 62(3): 037802. doi: 10.7498/aps.62.037802
    [12] 张季, 王迪, 张德明, 张庆礼, 万松明, 孙敦陆, 殷绍唐. 正磷酸盐晶体Ba3(PO4)2和Sr3(PO4)2高温拉曼光谱研究. 物理学报, 2013, 62(9): 097802. doi: 10.7498/aps.62.097802
    [13] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式. 物理学报, 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [14] 华宝成, 钱建强, 王曦, 姚骏恩. 应用于扫描探针显微镜的石英音叉机械模型研究. 物理学报, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [15] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [16] 周恒为, 张晋鲁, 黄以能, 应学农, 张 亮, 吴文惠, 沈异凡. 邻苯二甲酸二甲酯系材料的液态簧振动力学谱测量. 物理学报, 2007, 56(11): 6547-6551. doi: 10.7498/aps.56.6547
    [17] 武煜宇, 邹崇文, 徐彭寿. ZnO中H导致的缺陷态的局域振动模式研究. 物理学报, 2006, 55(10): 5466-5470. doi: 10.7498/aps.55.5466
    [18] 彭永进, 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁手性碳纳米管Γ点E1和E2振动模式. 物理学报, 2006, 55(6): 2860-2864. doi: 10.7498/aps.55.2860
    [19] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面. 物理学报, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [20] 张慧鹏, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁碳纳米管手性角对声子振动频率的影响. 物理学报, 2005, 54(9): 4279-4284. doi: 10.7498/aps.54.4279
计量
  • 文章访问数:  3136
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-16
  • 修回日期:  2017-01-22
  • 刊出日期:  2017-05-05

对甲氧基苯甲腈的单色共振双光子电离光谱

  • 1. 量子光学与光量子器件国家重点实验室, 山西大学激光光谱研究所, 太原 030006;
  • 2. 山西大学物理电子工程学院, 太原 030006
  • 通信作者: 李昌勇, lichyong@sxu.edu.cn
    基金项目: 国家重点基础研究发展计划(批准号:2012CB921603)、国家自然科学基金(批准号:61378039,61575115,11434007)、长江学者和创新团队发展计划(批准号:IRT13076)和量子光学与光量子器件国家重点实验室建设(批准号:2015012001-20)资助的课题.

摘要: 对甲氧基苯甲腈是一种重要的化学化工原料,本文采用超声分子束技术和共振多光子电离方法获得了对甲氧基苯甲腈的单色共振双光子电离光谱,基态S0到电子激发态S1的00跃迁被确定为(355492)cm-1,结合含时密度泛函理论计算结果对观察到的光谱进行了振动模式标识和描述.实验发现呼吸振动模非常易于激活,其基频和二次泛频光谱很强,三次泛频也可明确标识,观察到大量呼吸振动与其他正则模的结合振动,这是对甲氧基苯甲腈不同于常见的多原子分子的一个重要特性.这些结果为研究对甲氧基苯甲腈的里德堡态、动力学和零动能光谱等提供了重要的参考数据.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回