-
虽然水分子结构简单, 但是关于水冰的基本理论仍有很多问题没有科学答案. 对于冰的原子分子振动, 人们对其分子内的伸缩和弯曲振动以及分子的空间转动已经研究得很清楚. 然而30年前, 高亮度的非弹中子散射实验发现, 很多冰相的远红外分子平移区中存在两个明显的特征振动峰, 对其来源一直没有定论. 本文基于第一性原理密度泛函理论的CASTEP代码, 系统研究了不同冰相的振动谱和振动模式. 在对最简单的氢有序冰Ic模型的研究中, 首次发现了两类本征的氢键振动模式. 以此为线索, 继续模拟其他的冰相, 发现无论是氢有序还是氢无序结构都存在这个规律. 利用冰晶格局域正四面体理想模型, 理论上证明了两类振动模式可分为围绕一个水分子的氢键的四键振动和双键振动. 高压下, 因为结构变形, 存在介于二者之间的耦合振动. 此外, 还有能量更低的一些光学支振动模式, 比如团簇的振动、面间振动. 冰VII/VIII, XV/VI等结构, 是由两个子晶格嵌套而成的, 两个子晶格之间还有非氢键的相对振动. 综上, 这些分子平移振动可解释所有冰相的远红外振动谱, 为冰的分子振动理论补足了最后一块拼图. 由于液态水不存在这两类氢键振动, 因此其远红外吸收带在两个氢键位置恰好是个波谷. 结合太赫兹激光技术的发展, 此理论有望在工业除冰、食品解冻、可燃冰开采和生物分子冷冻塑型等领域产生系列原创成果.Despite its simple molecular structure, water is still a mystery to scientists. For the atomic and molecular vibrational modes of ice, as is well known, there are two kinds of vibrations: intra-molecular O—H stretching vibration and H—O—H bending vibration within the molecules and three kinds of molecular spatial rotations. However, thirty years ago, a high flux inelastic neutron scattering experiment showed that there are two distinct characteristic peaks in the far-infrared molecular translational vibration region of many ice phases. The origins of these peaks have not been determined till now. In this work, based on the CASTEP code, a first-principles density functional theory plane wave programme, the vibrational spectra as well as the vibrational normal modes of a series of ice phases are investigated. Two kinds of intrinsic hydrogen bond vibrational modes are first found in hydrogen-ordered ice Ic. Then it is found to be a general rule among ice family. Based on the ideal model, we prove that the two vibrational modes can be classified as four-bond vibration and two-bond vibration. There are many coupling modes in-between due to tetrahedral structure deformation under high pressure. Besides, there are also some optical vibrational modes with lower energy in the translational region, such as cluster vibrations and inter-plane vibrations. In Ice VII/VIII and XV/VI, each of which consists of two sublattices, there exist non-hydrogen bond vibrations. These molecular translational vibrations can explain all the far-infrared vibrational spectrum of ice phase, which makes up the last piece of the jigsaw puzzle for the molecular vibration theory of ice. The two vibrational modes do not exist in liquid water due to the collapse of the rigid tetrahedral structure. Thus, a window remains for ice resonance absorption with minimum energy loss in water. This theory is expected to be applicable to industrial deicing, food thawing, gas hydrate mining, and biomolecule frozen molding, etc.
-
Keywords:
- ice /
- hydrogen bond /
- vibration mode /
- density functional theory
[1] 邓耿, 尉志武 2016 科学通报 61 3181Google Scholar
Deng G, Wei Z W 2016 Chin. Sci. Bull. 61 3181Google Scholar
[2] Pauling L 1960 The Nature of Chemical Bond (New York: Cornell University Press) pp449–504
[3] Pople J A 1957 Proc. R. Soc. London, Ser. A 239 550Google Scholar
[4] Claussen W F 1951 J. Chem. Phys. 19 1425Google Scholar
[5] Frank H S, Wen W Y 1957 Discuss. Faraday Soc. 24 133Google Scholar
[6] Symons M C R 1972 Nature 239 257Google Scholar
[7] Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A 2004 Science 304 995Google Scholar
[8] Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851Google Scholar
[9] Sun Q 2013 Chem. Phys. Lett. 568 90Google Scholar
[10] Nilsson A, Wernet Ph, Nordlund D, Bergmann U, Cavalleri M 2005 Science 308 793AGoogle Scholar
[11] Smith J D, Cappa C D, Messer B M, Cappa C D 2005 Science 308 793BGoogle Scholar
[12] Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387Google Scholar
[13] Raichlin Y, Millo A, Katzir A 2004 Phys. Rev. Lett. 93 185703Google Scholar
[14] Russo J, Tanaka H 2014 Nat. Commun. 5 3556Google Scholar
[15] Ktihne T D, Khaliullin R Z 2013 Nat. Commun. 4 1450Google Scholar
[16] Ktihne T D, Khaliullin R Z 2014 J. Am. Chem. Soc. 136 3395Google Scholar
[17] Bertie J E, Whalley E 1967 J. Chem. Phys. 46 1271Google Scholar
[18] Tammann G 1900 Ann. Phys. 307 1Google Scholar
[19] Demontis P, LeSar R, Klein M L 1988 Phys. Rev. Lett. 60 2284Google Scholar
[20] Bertie J E, Calvert L D, Whalley E 1963 J. Chem. Phys. 38 840Google Scholar
[21] Bridgman P W 1912 Proc. Am. Acad. Arts Sci. 47 441Google Scholar
[22] Bridgman P W 1937 J. Chem. Phys. 5 964Google Scholar
[23] Whalley E, Davidson D W 1965 J. Chem. Phys. 43 2148Google Scholar
[24] Whalley E, Davidson D W, Heath J B R 1966 J. Chem. Phys. 45 3976Google Scholar
[25] Kuhs W F, Finney J L, Vettier C, Bliss D V 1984 J. Chem. Phys. 81 3612Google Scholar
[26] Whalley E, Heath J B R, Davidson D W 1968 J. Chem. Phys. 48 2362Google Scholar
[27] Tajima Y, Matsuo T, Suga H 1982 Nature 299 810Google Scholar
[28] Hirsch K R, Holzapfel W B 1986 J. Chem. Phys. 84 2771Google Scholar
[29] Lobban C, Finney J L, Kuhs W F 1998 Nature 391 268Google Scholar
[30] Matsuo T, Tajima Y, Suga H 1986 J. Phys. Chem. Solids 47 165Google Scholar
[31] Salzmann C G, Radaelli P G, Mayer A E, Finney J L 2006 Science 311 1758Google Scholar
[32] Tribello G A, Slater B, Salzmann C G 2006 J. Am. Chem. Soc. 128 12594Google Scholar
[33] Salzmann C G, Radaelli P G, Mayer E, Finney J L 2009 Phys. Rev. Lett. 103 105701Google Scholar
[34] Falenty A, Hansen T C, Kuhs W F 2014 Nature 516 213Google Scholar
[35] del Rosso L, Celli M, Ulivi L 2016 Nat. Commun. 7 13394Google Scholar
[36] Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C, Eggert J H 2018 Nat. Phys. 14 297Google Scholar
[37] Millot M, Coppari F, Rygg J R, Barrios A C, Hamel S, Swift D C 2019 Nature 569 251Google Scholar
[38] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva IV 2015 Nature 519 443Google Scholar
[39] Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar
[40] Koga K, Zeng X C, Tanaka H 1997 Phys. Rev. Lett. 79 5262Google Scholar
[41] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60Google Scholar
[42] Kuhs W F, Lehmann M S 1983 J. Phys. Chem. 87 4312Google Scholar
[43] Konig H 1943 Z. Kristallogr. 105 279Google Scholar
[44] Dowell L G, Rinfret A P 1960 Nature 188 1144Google Scholar
[45] Murray B J, Bertram A K 2006 Phys. Chem. Chem. Phys. 8 186Google Scholar
[46] Murray B J 2008 Environ. Res. Lett. 3 025008Google Scholar
[47] Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. U. S. A. 109 1041Google Scholar
[48] Whalley E 1981 Science 211 389Google Scholar
[49] Mayer E, Hallbrucker A 1987 Nature 325 601Google Scholar
[50] Kuhs W F, Bliss D V, Finney J L 1987 J. Phys. Colloq. 48 631Google Scholar
[51] Kuhs W F, Sippel C, Falenty A, Hansen T C 2012 Proc. Natl. Acad. Sci. U. S. A. 109 21259Google Scholar
[52] Murray B, Knopf D, Bertram A 2005 Nature 434 202Google Scholar
[53] Falenty A, Kuhs W F 2009 J. Phys. Chem. B 113 15975Google Scholar
[54] Baker J M, Dore J C, Behrens P 1997 J. Phys. Chem. B 101 6226Google Scholar
[55] Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar
[56] del Rosso L, Celli M, Grazzi F, Catti M, Ulivi L 2020 Nat. Mater. 19 663Google Scholar
[57] Komatsu K, Machida S, Noritake F, Hattori T, Kagi H 2020 Nat. Commun. 11 464Google Scholar
[58] Lekner J 1997 Physica B 240 263Google Scholar
[59] 黄盈盈, 苏艳, 赵纪军 2019 高压物理学报 33 010001Google Scholar
Huang Y Y, Su Y, Zhao J J 2019 Chin. J. High Pressure Phys. 33 010001Google Scholar
[60] Bartels-Rausch T, Bergeron V, Csrtwright J H E, Escribano R, Finney J L, Grothe H 2012 Rev. Mod. Phys. 84 885Google Scholar
[61] Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar
[62] Kamb B 1964 Acta Crystallogr. 17 1437Google Scholar
[63] Finch E D 1968 J. Chem. Phys. 49 4361Google Scholar
[64] Kamb B, Hamilton W C, Laplaca S J, Prakash A 1971 J. Chem. Phys. 55 1934Google Scholar
[65] Fortes A D, Wood I G, Brodholt J P, Vočadlo L 2003 J. Chem. Phys. 119 4567Google Scholar
[66] Bauer M, Elsaesser M S, Winkel K, Mayer E, Loerting T 2008 Phys. Rev. B 77 220105Google Scholar
[67] Scheuermann M, Geil B, Löw F, Fujara F 2009 J. Chem. Phys. 130 024506Google Scholar
[68] Bertie J E, Whalley E 1964 J. Chem. Phys. 40 1646Google Scholar
[69] Bertie J E, Labbé H J, Whalley E 1968 J. Chem. Phys. 49 775Google Scholar
[70] Bertie J E, Francis B F 1980 J. Chem. Phys. 72 2213Google Scholar
[71] Bertie J E, Francis B F 1982 J. Chem. Phys. 77 1Google Scholar
[72] Li J C, Londono D, Ross D K, Finney J L, Bennington S M, Taylor A D 1992 J. Phys. Condens. Matter 4 2109Google Scholar
[73] Kamb B 1965 Science 150 205Google Scholar
[74] Kuhs W F, Ahsbahs H, Londono D, Finney J L 1989 Physica B 156 684Google Scholar
[75] Whale T F, Clark S J, Finney J L 2013 J. Raman Spectrosc. 44 290Google Scholar
[76] Komatsu K, Noritake F, Machida S 2016 Sci. Rep. 6 28920Google Scholar
[77] Nanda K D, Beran G J O 2013 J. Phys. Chem. Lett. 4 3165Google Scholar
[78] Gasser T M, Thoeny A, Plaga L 2018 Chem. Sci. 9 4224Google Scholar
[79] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G 1999 Nature 398 681Google Scholar
[80] Vaks V G, Zinenko V I 1981 Solid State Commun. 39 643Google Scholar
[81] Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K 2003 Phys. Rev. B 68 014106Google Scholar
[82] Besson J M, Kobayashi M, Nakai T, Endo S 1997 Phys. Rev. B 55 11191Google Scholar
[83] Pruzan P, Chervin J C, Canny B 1993 J. Chem. Phys. 99 9842Google Scholar
[84] Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K 1996 Science 273 218Google Scholar
[85] Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673Google Scholar
[86] Klug D D, Handa Y P, Tse J S, Whalley E 1989 J. Chem. Phys. 90 2390Google Scholar
[87] Minceva-Sukarova B, Sherman W F, Wilkinson G R 1984 J. Phys. C: Solid State Phys. 17 5833Google Scholar
[88] Li J C, Londono J D, Ross D K, Finney J L, Tomkinson J, Sherman W F 1991 J. Chem. Phys. 94 6770Google Scholar
[89] Garg A K 1988 Phys. Status Solidi A 110 467Google Scholar
[90] Tse J S, Klein M L, McDonald I R 1984 J. Chem. Phys. 81 6124Google Scholar
[91] Holzapfel W B 1972 J. Chem. Phys. 56 712Google Scholar
[92] Polian A, Grimsditch M 1984 Phys. Rev. Lett. 52 1312Google Scholar
[93] Flores-Livas J A, Sanna A, Graužinytė M, Davydov A, Goedecker S, Marques M A L 2017 Sci. Rep. 7 6825Google Scholar
[94] Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71Google Scholar
[95] Marqués M, Ackland G, Loveday J 2009 High Pressure Res. 29 208Google Scholar
[96] Putrino A, Parrinello M 2002 Phys. Rev. Lett. 88 176401Google Scholar
[97] Goncharov A F, Struzhkin V V, Mao H K, Hemley R J 1999 Phys. Rev. Lett. 83 1998Google Scholar
[98] Men Z, Fang W, Li D, Li Z, Sun C 2014 Sci. Rep. 4 4606Google Scholar
[99] Giauque W F, Stout J W 1936 J. Am. Chem. Soc. 58 1144Google Scholar
[100] Kawada S 1972 J. Phys. Soc. Jpn. 32 1442Google Scholar
[101] Leadbetter A J, Ward R C 1985 J. Chem. Phys. 82 424Google Scholar
[102] Line C M B, Whitworth R W 1996 J. Chem. Phys. 104 10008Google Scholar
[103] Jackson S M, Nield V M, Whitworth R W, Oguro M, Wilson C C 1997 J. Phys. Chem. B 101 6142Google Scholar
[104] Salzmann C G, Radaelli P G, Finney J L, Mayer E 2008 Phys. Chem. Chem. Phys. 10 6313Google Scholar
[105] Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Phys. Chem. Chem. Phys. 8 3088Google Scholar
[106] Zhang J, Xiao Z, Kuo J 2010 J. Chem. Phys. 132 184506Google Scholar
[107] Tran H, Cunha A V, Shephard J J, Shalit A, Hamm P, Jansen T L C, Salzmann C G 2017 J. Chem. Phys. 147 144501Google Scholar
[108] Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Chem. Phys. Lett. 429 469Google Scholar
[109] Yoshimura Y, Stewart S T, Mao H K, Hemley R J 2007 J. Chem. Phys. 126 174505Google Scholar
[110] Koza M M, Schober H, Tölle A, Fujara F, Hansen T 1999 Nature 397 660Google Scholar
[111] Koza M M, Schober H, Parker S F, Peters J 2008 Phys. Rew. B 77 104306Google Scholar
[112] Huang Y Y, Zhu C Q, Wang L, Cao X X, Su Y, Jiang X, Meng S, Zhao J J, Zeng X C 2016 Sci. Adv. 2 e1501010Google Scholar
[113] Huang Y Y, Zhu C Q, Wang L, Zhao J J and Zeng X C 2017 Chem. Phys. Lett. 671 186Google Scholar
[114] Matsui T, Hirata M, Yagasaki T, Matsumoto M, Tanaka H 2017 J. Chem. Phys. 147 091101Google Scholar
[115] Liu Y, Ojamäe L 2018 Phys. Chem. Chem. Phys. 20 8333Google Scholar
[116] Engel E A, Anelli A, Ceriotti M, Pickard C J, Needs R J 2018 Nat. Commun. 9 2173Google Scholar
[117] Matsui T, Yagasaki T, Matsumoto M, Tanaka H 2019 J. Chem. Phys. 150 041102Google Scholar
[118] del Rosso L, Grazzi F, Celli M, Colognesi D, Garcia-Sakai V, Ulivi L 2016 J. Phys. Chem. C 120 26955Google Scholar
[119] Bertie J E, Labbe H J, Whalley E 1969 J. Chem. Phys. 50 4501Google Scholar
[120] Wong P T T, Whalley E 1976 J. Chem. Phys. 65 829Google Scholar
[121] Rasetti F 1932 Nuovo Cirnento 9 72Google Scholar
[122] Hibben J H 1937 J. Chem. Phys. 5 166Google Scholar
[123] Cross P C, Burnham J, Leighton P A 1937 J. Am. Chem. Soc. 59 1134Google Scholar
[124] Narayanaswarny P K 1948 Proc. Indian Acad. Sci. 27 311Google Scholar
[125] Valkov V I, Maslenkova G L 1956 Opt. Spektrosk. 1 881
[126] Taylor M J, Whalley E 1964 J. Chem. Phys. 40 1660Google Scholar
[127] Marchi M, Tse J S, Klein M L 1986 J. Chem. Phys. 85 2414Google Scholar
[128] Renker B 1973 International Symposium on the Physics and Chemistry of Ice Ottowa, Ont., Canada, August 14–18, 1972 p82
[129] Li J C, Ross D K, Howe L, Hall P G, Tomkinson J 1989 Physica B 156 376Google Scholar
[130] Klug D D, Tse J S, Whalley E 1991 J. Chem. Phys. 95 7011Google Scholar
[131] Li J C 1996 J. Chem. Phys. 105 6733Google Scholar
[132] Li J C, Ross D K 1993 Nature 365 327Google Scholar
[133] Morrison I, Jenkins S 1999 Physica B 263 442Google Scholar
[134] Klotz S, Strässle T, Salzmann C G, Philippe J, Parker S F 2005 Europhys. Lett. 72 576Google Scholar
[135] Zhang P, Tian L, Zhang Z P, Shao G, Li J C 2012 J. Chem. Phys. 137 044504Google Scholar
[136] He X, Sode O, Xantheas S S, Hirata S 2012 J. Chem. Phys. 137 204505Google Scholar
[137] Zhang P, Liu Y, Yu H, Han S H, Lü Y B, Lv M S, Cong W Y 2014 Chin. Phys. B 23 026103Google Scholar
[138] Zhang P, Wang Z, Lü Y B, Ding Z W 2016 Sci. Rep. 6 29273Google Scholar
[139] Yuan Z Y, Zhang P, Yao S K, Lü Y B, Yang H Z, Luo H W, Zhao Z J 2017 RSC Adv. 7 36801Google Scholar
[140] Yao S K, Zhang P, Zhang Y, Lü Y B, Yang T l, Sun B G, Yuan Z Y, Luo H W 2017 RSC Adv. 7 31789Google Scholar
[141] Jiang L, Yao S K, Zhang K, Wang Z R, Luo H W, Zhu X L, Gu Y, Zhang P 2018 Molecules 23 2780Google Scholar
[142] Qin X L, Zhu X L, Cao J W, Jiang L, Gu Y, Wang X C, Zhang P 2019 Molecules 24 3115Google Scholar
[143] Zhao Z J, Qin X L, Cao J W, Zhu X L, Yang Y C, Wang H C, Zhang P 2019 ACS Omega 4 18936Google Scholar
[144] Cao J W, Chen J Y, Qin X L, Zhu X L, Jiang L, Gu Y, Yu X H, Zhang P 2019 Molecules 24 3135Google Scholar
[145] Zhang K, Zhang P, Wang Z R, Zhu X L, Lu Y B, Guan C B, Li Y H 2018 Molecules 23 1781Google Scholar
[146] Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C 123 14880Google Scholar
[147] Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Liu Y, Kolesnikov A I, Zhang P 2020 J. Phys. Chem. C 124 1165Google Scholar
[148] Wei Z W, Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Zhang P 2019 AIP Adv. 9 115118Google Scholar
[149] Zhu X L, Yuan Z Y, Jiang L, Zhang K, Wang Z R, Luo H W, Gu Y, Cao J W, Qin X L, Zhang P 2019 New J. Phys. 21 043054Google Scholar
[150] Wang Z R, Zhu X L, Jiang L, Zhang K, Luo H W, Gu Y, Zhang P 2019 Materials 12 246Google Scholar
[151] Matsumoto M, Yagasaki T, Tanaka H 2018 J. Comput. Chem. 39 61Google Scholar
[152] Wang H C, Zhu X L, Cao J W, Qin X L, Yang Y C, Niu T X, LüY B, Zhang P 2020 New J. Phys. 22 093066Google Scholar
[153] Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413Google Scholar
[154] Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515Google Scholar
[155] Li J C, Burnham C, Kolesnikov A I, Eccleston R S 1999 Phys. Rev. B 59 9088Google Scholar
[156] Kolesnikov A I, Li J C, Ross D K, et al. 1992 Phys. Lett. A 168 308Google Scholar
-
图 1 常态冰Ih相的声子态密度(PDOS)谱. 横轴波数的单位是cm–1, 四个独立的振动带从左到右依次是分子间平移振动带(translation), 分子转动振动(libration)带, 分子内弯曲振动(bending)带, 分子内伸缩振动(stretching)带
Fig. 1. Phonon density of states (PDOS) spectrum of ice Ih. The four independent vibration bands from left to right are translation band, libration band, bending band, and stretching band.
图 5 氢有序的Ic相理想模型平动区的三种简正模式. 因为原胞仅含两个水分子, 为显示整体的振动情况, 使用了超胞来演示两类振动模式. 绿色箭头表示振动方向, 大小正比于振幅
Fig. 5. The three normal modes in the translational region of hydrogen ordered Ice Ic. The primitive cell contains two water molecules, and in order to show the vibration of the whole, the supercell is used to demonstrate two vibration modes. The green arrow indicates the direction of the vibration, and the magnitude is proportional to the amplitude.
图 6 氢有序冰相PDOS计算谱, 按照压强大小排列, 从上到下依次是冰X, VIII, XIII, XV, XIV, II, IX, Ic和XI. 黄色矩形区域对应两个氢键特征峰的位置
Fig. 6. PDOS spectrum of hydrogen ordered Ice phases, arranged by pressure, from top to bottom are ice X, VIII, XIII, XV, XIV, II, IX, Ic and XI. The yellow rectangle region corresponds to the positions of two characteristic peaks of hydrogen bond.
图 9 (a)冰VIII和(b)冰VII的双键振动(红色)、四键振动(蓝色)、非氢键振动(绿色)三类模式的分布图. 插图为计算模拟得到的VIII和VII的PDOS谱, 范围0—350 cm–1
Fig. 9. Statistical distribution of two-bond vibration (red), four-bond vibration (blue) and non-hydrogen bond vibration modes (green) of Ice VIII (a) and Ice VII (b). The insertation shows the PDOS spectrum of Ice VIII and VII (0–350 cm–1).
氢有序冰相IX、II和XIV中两类氢键振动模式. 波数在245, 206和194 cm–1处的振动分别为冰IX, II和XIV的双键振动模式; 波数在307, 318和292 cm–1处的分别为冰IX, II和XIV的四键振动模式 (冰XIV中振动明显的分子用黄色标记)
. Two kinds of H-bond vibrational modes in ice IX, II, and XIV. The two-bond vibrational modes of Ice IX, II and XIV at 245, 206 and 194 cm–1 are respectively; The four-bond vibrational modes of ice IX, II and XIV at 307, 318 and 292 cm–1, respectively (The yellow moleculars vibrate obviously in ice XIV).
冰VII相在178 cm–1处的双键振动模式和在255 cm–1处的四键振动模式; 冰XVI相在160 cm–1处的双键振动模式和在237 cm–1处的四键振动模式 (冰VII中振幅明显的分子用黄色标记)
. Two-bond vibrational mode at 178 cm–1 and four-bond vibrational mode at 255 cm–1 in Ice VII phase; two-bond vibration mode at 160 cm–1 and four bond vibration mode at 237 cm–1 in ice VIII (The yellow moleculars vibrate obviously).
冰XIII相和冰V相在223/225 cm–1处的双键振动模式和318/312 cm–1处的四键振动模式; 冰XV相和冰VI相在206/231 cm–1处的双键振动模式和285/328 cm–1处的四键振动模式 (冰VII中振幅明显的分子用黄色原子标记)
. Two-bond vibrational mode at 223/225 cm–1 and four-bond vibrational mode at 318/312 cm–1 in ice XIII/V; two-bond vibrational mode at 206/231 cm–1 and four-bond vibrational mode at 285/328 cm–1 of ice XV/VI (The yellow moleculars vibrate obviously).
表 1 部分冰相的计算参数. 包括静水压强、截断能、K点取样网格或K点间隔
Table 1. Calculation parameters of ice phases, including calculation of pressure, cutoff energy, K-mesh or seperation.
Ice phase Environmental pressure/GPa Energy cutoff/eV K-mesh or seperation Ih 0 830 3 × 2 × 2 Ic 0 1200 7 × 7 × 8 II 0.50 750 2 × 2 × 2 V 1.00 750 2 × 2 × 1 VI 2.00 750 2 × 2 × 2 VII 2.40 830 3 × 3 × 2 VIII 2.40 1000 4 × 4 × 5 IX 0.30 750 2 × 2 × 2 X 120.00 830 0.07/Å XI 0 750 6 × 6 × 3 XIII 1.00 830 2 × 3 × 1 XIV 0.55 750 2 × 2 × 3 XV 0.90 750 4 × 4 × 4 XVI 0 750 1 × 1 × 1 XVII 0.40 830 1 × 1 × 1 表 2 各冰相的氢键、氢氧共价键的长度和相邻的氧原子的距离(单位: Å), H—O—H键角, 4个振动区域的波数范围(单位: cm–1), 结构优化密度(单位: g/cm–3)
Table 2. Length of H-bond, OH covalent bond and distance of adjacent O atoms (in Å), H—O—H bond angle, wavenumber range of four vibration regions of ice phases (in cm–1), structure optimization density (in g/cm–3).
ICE H···O O—H O—H···O HOH Angle Translation Libration Bending Stretching Density Ice X 1.138 1.138 2.275 109.5 — — — — 3.3 Ice VIII 2.038 0.976 3.013 105.1 161-254 502-1032 1589-1742 3357-3480 1.42 Ice XIII 1.786–3.173 0.980–0.987 2.751–2.874 102.7–108.1 50–318 524–982 1629–1721 3198–3441 1.18 Ice XV 1.902–1.991 0.978–0.981 2.886–2.908 101.6–107.2 73–285 477–936 1609–1709 3278–3485 1.21 Ice XIV 1.986–1.838 0.978–0.984 2.793–2.951 102.8–105.3 104–292 502–933 1647–1735 3234–3478 1.15 Ice II 1.815–2.057 0.976–0.986 2.796–3.023 102.8/105.0 142–318 522–969 1659–1723 3193–3483 1.06 Ice IX 1.829–1.849 0.984/0.985 2.802–2.824 104.2/104.7 67–307 580–1003 1639–1716 3177–3391 1.01 Ice Ic 1.799 1.000 2.798 105.6 230/321 589–1053 1631–1708 3113–3334 0.89 Ice XI 1.813/1.814 0.987/0.988 2.799/2.802 105.7/106.0 47–310 586–1063 1634–1710 3110–3353 0.89 Ice Ih 1.788–1.866 0.986–0.989 2.784–2.843 104.7–106.2 33–327 579–1030 1651–1706 3110–3363 0.88 XVII 1.806–1.840 0.986–0.988 2.791–2.826 105.0–107.9 36–301 588–1037 1635–1709 3125–3369 0.81 XVI 1.797–1.845 0.984–0.990 2.768–2.830 105.1–106.3 53–315 594–1053 1649–1715 3117–3380 0.80 -
[1] 邓耿, 尉志武 2016 科学通报 61 3181Google Scholar
Deng G, Wei Z W 2016 Chin. Sci. Bull. 61 3181Google Scholar
[2] Pauling L 1960 The Nature of Chemical Bond (New York: Cornell University Press) pp449–504
[3] Pople J A 1957 Proc. R. Soc. London, Ser. A 239 550Google Scholar
[4] Claussen W F 1951 J. Chem. Phys. 19 1425Google Scholar
[5] Frank H S, Wen W Y 1957 Discuss. Faraday Soc. 24 133Google Scholar
[6] Symons M C R 1972 Nature 239 257Google Scholar
[7] Wernet P, Nordlund D, Bergmann U, Cavalleri M, Odelius M, Ogasawara H, Naslund L A, Hirsch T K, Ojamae L, Glatzel P, Pettersson L G M, Nilsson A 2004 Science 304 995Google Scholar
[8] Smith J D, Cappa C D, Wilson K R, Messer B M, Cohen R C, Saykally R J 2004 Science 306 851Google Scholar
[9] Sun Q 2013 Chem. Phys. Lett. 568 90Google Scholar
[10] Nilsson A, Wernet Ph, Nordlund D, Bergmann U, Cavalleri M 2005 Science 308 793AGoogle Scholar
[11] Smith J D, Cappa C D, Messer B M, Cappa C D 2005 Science 308 793BGoogle Scholar
[12] Tokushima T, Harada Y, Takahashi O, Senba Y, Ohashi H, Pettersson L G M, Nilsson A, Shin S 2008 Chem. Phys. Lett. 460 387Google Scholar
[13] Raichlin Y, Millo A, Katzir A 2004 Phys. Rev. Lett. 93 185703Google Scholar
[14] Russo J, Tanaka H 2014 Nat. Commun. 5 3556Google Scholar
[15] Ktihne T D, Khaliullin R Z 2013 Nat. Commun. 4 1450Google Scholar
[16] Ktihne T D, Khaliullin R Z 2014 J. Am. Chem. Soc. 136 3395Google Scholar
[17] Bertie J E, Whalley E 1967 J. Chem. Phys. 46 1271Google Scholar
[18] Tammann G 1900 Ann. Phys. 307 1Google Scholar
[19] Demontis P, LeSar R, Klein M L 1988 Phys. Rev. Lett. 60 2284Google Scholar
[20] Bertie J E, Calvert L D, Whalley E 1963 J. Chem. Phys. 38 840Google Scholar
[21] Bridgman P W 1912 Proc. Am. Acad. Arts Sci. 47 441Google Scholar
[22] Bridgman P W 1937 J. Chem. Phys. 5 964Google Scholar
[23] Whalley E, Davidson D W 1965 J. Chem. Phys. 43 2148Google Scholar
[24] Whalley E, Davidson D W, Heath J B R 1966 J. Chem. Phys. 45 3976Google Scholar
[25] Kuhs W F, Finney J L, Vettier C, Bliss D V 1984 J. Chem. Phys. 81 3612Google Scholar
[26] Whalley E, Heath J B R, Davidson D W 1968 J. Chem. Phys. 48 2362Google Scholar
[27] Tajima Y, Matsuo T, Suga H 1982 Nature 299 810Google Scholar
[28] Hirsch K R, Holzapfel W B 1986 J. Chem. Phys. 84 2771Google Scholar
[29] Lobban C, Finney J L, Kuhs W F 1998 Nature 391 268Google Scholar
[30] Matsuo T, Tajima Y, Suga H 1986 J. Phys. Chem. Solids 47 165Google Scholar
[31] Salzmann C G, Radaelli P G, Mayer A E, Finney J L 2006 Science 311 1758Google Scholar
[32] Tribello G A, Slater B, Salzmann C G 2006 J. Am. Chem. Soc. 128 12594Google Scholar
[33] Salzmann C G, Radaelli P G, Mayer E, Finney J L 2009 Phys. Rev. Lett. 103 105701Google Scholar
[34] Falenty A, Hansen T C, Kuhs W F 2014 Nature 516 213Google Scholar
[35] del Rosso L, Celli M, Ulivi L 2016 Nat. Commun. 7 13394Google Scholar
[36] Millot M, Hamel S, Rygg J R, Celliers P M, Collins G W, Coppari F, Fratanduono D E, Jeanloz R, Swift D C, Eggert J H 2018 Nat. Phys. 14 297Google Scholar
[37] Millot M, Coppari F, Rygg J R, Barrios A C, Hamel S, Swift D C 2019 Nature 569 251Google Scholar
[38] Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K, Grigorieva IV 2015 Nature 519 443Google Scholar
[39] Zhou W, Yin K, Wang C, Zhang Y, Xu T, Borisevich A, Sun L, Idrobo J C, Chisholm M F, Pantelides S T, Klie R F, Lupini A R 2015 Nature 528 E1Google Scholar
[40] Koga K, Zeng X C, Tanaka H 1997 Phys. Rev. Lett. 79 5262Google Scholar
[41] Ma R, Cao D, Zhu C, Tian Y, Peng J, Guo J, Chen J, Li X Z, Francisco J S, Zeng X C, Xu L M, Wang E G, Jiang Y 2020 Nature 577 60Google Scholar
[42] Kuhs W F, Lehmann M S 1983 J. Phys. Chem. 87 4312Google Scholar
[43] Konig H 1943 Z. Kristallogr. 105 279Google Scholar
[44] Dowell L G, Rinfret A P 1960 Nature 188 1144Google Scholar
[45] Murray B J, Bertram A K 2006 Phys. Chem. Chem. Phys. 8 186Google Scholar
[46] Murray B J 2008 Environ. Res. Lett. 3 025008Google Scholar
[47] Malkin T L, Murray B J, Brukhno A V, Anwar J, Salzmann C G 2012 Proc. Natl. Acad. Sci. U. S. A. 109 1041Google Scholar
[48] Whalley E 1981 Science 211 389Google Scholar
[49] Mayer E, Hallbrucker A 1987 Nature 325 601Google Scholar
[50] Kuhs W F, Bliss D V, Finney J L 1987 J. Phys. Colloq. 48 631Google Scholar
[51] Kuhs W F, Sippel C, Falenty A, Hansen T C 2012 Proc. Natl. Acad. Sci. U. S. A. 109 21259Google Scholar
[52] Murray B, Knopf D, Bertram A 2005 Nature 434 202Google Scholar
[53] Falenty A, Kuhs W F 2009 J. Phys. Chem. B 113 15975Google Scholar
[54] Baker J M, Dore J C, Behrens P 1997 J. Phys. Chem. B 101 6226Google Scholar
[55] Malkin T L, Murray B J, Salzmann C G, Molinero V, Pickering S J, Whale T F 2015 Phys. Chem. Chem. Phys. 17 60Google Scholar
[56] del Rosso L, Celli M, Grazzi F, Catti M, Ulivi L 2020 Nat. Mater. 19 663Google Scholar
[57] Komatsu K, Machida S, Noritake F, Hattori T, Kagi H 2020 Nat. Commun. 11 464Google Scholar
[58] Lekner J 1997 Physica B 240 263Google Scholar
[59] 黄盈盈, 苏艳, 赵纪军 2019 高压物理学报 33 010001Google Scholar
Huang Y Y, Su Y, Zhao J J 2019 Chin. J. High Pressure Phys. 33 010001Google Scholar
[60] Bartels-Rausch T, Bergeron V, Csrtwright J H E, Escribano R, Finney J L, Grothe H 2012 Rev. Mod. Phys. 84 885Google Scholar
[61] Moberg D R, Sharp P J, Paesani F 2018 J. Phys. Chem. B 122 10572Google Scholar
[62] Kamb B 1964 Acta Crystallogr. 17 1437Google Scholar
[63] Finch E D 1968 J. Chem. Phys. 49 4361Google Scholar
[64] Kamb B, Hamilton W C, Laplaca S J, Prakash A 1971 J. Chem. Phys. 55 1934Google Scholar
[65] Fortes A D, Wood I G, Brodholt J P, Vočadlo L 2003 J. Chem. Phys. 119 4567Google Scholar
[66] Bauer M, Elsaesser M S, Winkel K, Mayer E, Loerting T 2008 Phys. Rev. B 77 220105Google Scholar
[67] Scheuermann M, Geil B, Löw F, Fujara F 2009 J. Chem. Phys. 130 024506Google Scholar
[68] Bertie J E, Whalley E 1964 J. Chem. Phys. 40 1646Google Scholar
[69] Bertie J E, Labbé H J, Whalley E 1968 J. Chem. Phys. 49 775Google Scholar
[70] Bertie J E, Francis B F 1980 J. Chem. Phys. 72 2213Google Scholar
[71] Bertie J E, Francis B F 1982 J. Chem. Phys. 77 1Google Scholar
[72] Li J C, Londono D, Ross D K, Finney J L, Bennington S M, Taylor A D 1992 J. Phys. Condens. Matter 4 2109Google Scholar
[73] Kamb B 1965 Science 150 205Google Scholar
[74] Kuhs W F, Ahsbahs H, Londono D, Finney J L 1989 Physica B 156 684Google Scholar
[75] Whale T F, Clark S J, Finney J L 2013 J. Raman Spectrosc. 44 290Google Scholar
[76] Komatsu K, Noritake F, Machida S 2016 Sci. Rep. 6 28920Google Scholar
[77] Nanda K D, Beran G J O 2013 J. Phys. Chem. Lett. 4 3165Google Scholar
[78] Gasser T M, Thoeny A, Plaga L 2018 Chem. Sci. 9 4224Google Scholar
[79] Klotz S, Besson J M, Hamel G, Nelmes R J, Loveday J S, Marshall W G 1999 Nature 398 681Google Scholar
[80] Vaks V G, Zinenko V I 1981 Solid State Commun. 39 643Google Scholar
[81] Song M, Yamawaki H, Fujihisa H, Sakashita M, Aoki K 2003 Phys. Rev. B 68 014106Google Scholar
[82] Besson J M, Kobayashi M, Nakai T, Endo S 1997 Phys. Rev. B 55 11191Google Scholar
[83] Pruzan P, Chervin J C, Canny B 1993 J. Chem. Phys. 99 9842Google Scholar
[84] Goncharov A F, Struzhkin V V, Somayazulu M S, Hemley R J, Mao H K 1996 Science 273 218Google Scholar
[85] Aoki K, Yamawaki H, Sakashita M, Fujihisa H 1996 Phys. Rev. B 54 15673Google Scholar
[86] Klug D D, Handa Y P, Tse J S, Whalley E 1989 J. Chem. Phys. 90 2390Google Scholar
[87] Minceva-Sukarova B, Sherman W F, Wilkinson G R 1984 J. Phys. C: Solid State Phys. 17 5833Google Scholar
[88] Li J C, Londono J D, Ross D K, Finney J L, Tomkinson J, Sherman W F 1991 J. Chem. Phys. 94 6770Google Scholar
[89] Garg A K 1988 Phys. Status Solidi A 110 467Google Scholar
[90] Tse J S, Klein M L, McDonald I R 1984 J. Chem. Phys. 81 6124Google Scholar
[91] Holzapfel W B 1972 J. Chem. Phys. 56 712Google Scholar
[92] Polian A, Grimsditch M 1984 Phys. Rev. Lett. 52 1312Google Scholar
[93] Flores-Livas J A, Sanna A, Graužinytė M, Davydov A, Goedecker S, Marques M A L 2017 Sci. Rep. 7 6825Google Scholar
[94] Lu X Z, Zhang Y, Zhao P, Fang S J 2011 J. Phys. Chem. B 115 71Google Scholar
[95] Marqués M, Ackland G, Loveday J 2009 High Pressure Res. 29 208Google Scholar
[96] Putrino A, Parrinello M 2002 Phys. Rev. Lett. 88 176401Google Scholar
[97] Goncharov A F, Struzhkin V V, Mao H K, Hemley R J 1999 Phys. Rev. Lett. 83 1998Google Scholar
[98] Men Z, Fang W, Li D, Li Z, Sun C 2014 Sci. Rep. 4 4606Google Scholar
[99] Giauque W F, Stout J W 1936 J. Am. Chem. Soc. 58 1144Google Scholar
[100] Kawada S 1972 J. Phys. Soc. Jpn. 32 1442Google Scholar
[101] Leadbetter A J, Ward R C 1985 J. Chem. Phys. 82 424Google Scholar
[102] Line C M B, Whitworth R W 1996 J. Chem. Phys. 104 10008Google Scholar
[103] Jackson S M, Nield V M, Whitworth R W, Oguro M, Wilson C C 1997 J. Phys. Chem. B 101 6142Google Scholar
[104] Salzmann C G, Radaelli P G, Finney J L, Mayer E 2008 Phys. Chem. Chem. Phys. 10 6313Google Scholar
[105] Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Phys. Chem. Chem. Phys. 8 3088Google Scholar
[106] Zhang J, Xiao Z, Kuo J 2010 J. Chem. Phys. 132 184506Google Scholar
[107] Tran H, Cunha A V, Shephard J J, Shalit A, Hamm P, Jansen T L C, Salzmann C G 2017 J. Chem. Phys. 147 144501Google Scholar
[108] Salzmann C G, Hallbrucker A, Finney J L, Mayer E 2006 Chem. Phys. Lett. 429 469Google Scholar
[109] Yoshimura Y, Stewart S T, Mao H K, Hemley R J 2007 J. Chem. Phys. 126 174505Google Scholar
[110] Koza M M, Schober H, Tölle A, Fujara F, Hansen T 1999 Nature 397 660Google Scholar
[111] Koza M M, Schober H, Parker S F, Peters J 2008 Phys. Rew. B 77 104306Google Scholar
[112] Huang Y Y, Zhu C Q, Wang L, Cao X X, Su Y, Jiang X, Meng S, Zhao J J, Zeng X C 2016 Sci. Adv. 2 e1501010Google Scholar
[113] Huang Y Y, Zhu C Q, Wang L, Zhao J J and Zeng X C 2017 Chem. Phys. Lett. 671 186Google Scholar
[114] Matsui T, Hirata M, Yagasaki T, Matsumoto M, Tanaka H 2017 J. Chem. Phys. 147 091101Google Scholar
[115] Liu Y, Ojamäe L 2018 Phys. Chem. Chem. Phys. 20 8333Google Scholar
[116] Engel E A, Anelli A, Ceriotti M, Pickard C J, Needs R J 2018 Nat. Commun. 9 2173Google Scholar
[117] Matsui T, Yagasaki T, Matsumoto M, Tanaka H 2019 J. Chem. Phys. 150 041102Google Scholar
[118] del Rosso L, Grazzi F, Celli M, Colognesi D, Garcia-Sakai V, Ulivi L 2016 J. Phys. Chem. C 120 26955Google Scholar
[119] Bertie J E, Labbe H J, Whalley E 1969 J. Chem. Phys. 50 4501Google Scholar
[120] Wong P T T, Whalley E 1976 J. Chem. Phys. 65 829Google Scholar
[121] Rasetti F 1932 Nuovo Cirnento 9 72Google Scholar
[122] Hibben J H 1937 J. Chem. Phys. 5 166Google Scholar
[123] Cross P C, Burnham J, Leighton P A 1937 J. Am. Chem. Soc. 59 1134Google Scholar
[124] Narayanaswarny P K 1948 Proc. Indian Acad. Sci. 27 311Google Scholar
[125] Valkov V I, Maslenkova G L 1956 Opt. Spektrosk. 1 881
[126] Taylor M J, Whalley E 1964 J. Chem. Phys. 40 1660Google Scholar
[127] Marchi M, Tse J S, Klein M L 1986 J. Chem. Phys. 85 2414Google Scholar
[128] Renker B 1973 International Symposium on the Physics and Chemistry of Ice Ottowa, Ont., Canada, August 14–18, 1972 p82
[129] Li J C, Ross D K, Howe L, Hall P G, Tomkinson J 1989 Physica B 156 376Google Scholar
[130] Klug D D, Tse J S, Whalley E 1991 J. Chem. Phys. 95 7011Google Scholar
[131] Li J C 1996 J. Chem. Phys. 105 6733Google Scholar
[132] Li J C, Ross D K 1993 Nature 365 327Google Scholar
[133] Morrison I, Jenkins S 1999 Physica B 263 442Google Scholar
[134] Klotz S, Strässle T, Salzmann C G, Philippe J, Parker S F 2005 Europhys. Lett. 72 576Google Scholar
[135] Zhang P, Tian L, Zhang Z P, Shao G, Li J C 2012 J. Chem. Phys. 137 044504Google Scholar
[136] He X, Sode O, Xantheas S S, Hirata S 2012 J. Chem. Phys. 137 204505Google Scholar
[137] Zhang P, Liu Y, Yu H, Han S H, Lü Y B, Lv M S, Cong W Y 2014 Chin. Phys. B 23 026103Google Scholar
[138] Zhang P, Wang Z, Lü Y B, Ding Z W 2016 Sci. Rep. 6 29273Google Scholar
[139] Yuan Z Y, Zhang P, Yao S K, Lü Y B, Yang H Z, Luo H W, Zhao Z J 2017 RSC Adv. 7 36801Google Scholar
[140] Yao S K, Zhang P, Zhang Y, Lü Y B, Yang T l, Sun B G, Yuan Z Y, Luo H W 2017 RSC Adv. 7 31789Google Scholar
[141] Jiang L, Yao S K, Zhang K, Wang Z R, Luo H W, Zhu X L, Gu Y, Zhang P 2018 Molecules 23 2780Google Scholar
[142] Qin X L, Zhu X L, Cao J W, Jiang L, Gu Y, Wang X C, Zhang P 2019 Molecules 24 3115Google Scholar
[143] Zhao Z J, Qin X L, Cao J W, Zhu X L, Yang Y C, Wang H C, Zhang P 2019 ACS Omega 4 18936Google Scholar
[144] Cao J W, Chen J Y, Qin X L, Zhu X L, Jiang L, Gu Y, Yu X H, Zhang P 2019 Molecules 24 3135Google Scholar
[145] Zhang K, Zhang P, Wang Z R, Zhu X L, Lu Y B, Guan C B, Li Y H 2018 Molecules 23 1781Google Scholar
[146] Gu Y, Zhu X L, Jiang L, Cao J W, Qin X L, Yao S K, Zhang P 2019 J. Phys. Chem. C 123 14880Google Scholar
[147] Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Liu Y, Kolesnikov A I, Zhang P 2020 J. Phys. Chem. C 124 1165Google Scholar
[148] Wei Z W, Zhu X L, Cao J W, Qin X L, Jiang L, Gu Y, Wang H C, Zhang P 2019 AIP Adv. 9 115118Google Scholar
[149] Zhu X L, Yuan Z Y, Jiang L, Zhang K, Wang Z R, Luo H W, Gu Y, Cao J W, Qin X L, Zhang P 2019 New J. Phys. 21 043054Google Scholar
[150] Wang Z R, Zhu X L, Jiang L, Zhang K, Luo H W, Gu Y, Zhang P 2019 Materials 12 246Google Scholar
[151] Matsumoto M, Yagasaki T, Tanaka H 2018 J. Comput. Chem. 39 61Google Scholar
[152] Wang H C, Zhu X L, Cao J W, Qin X L, Yang Y C, Niu T X, LüY B, Zhang P 2020 New J. Phys. 22 093066Google Scholar
[153] Hammer B, Hansen L B, Norskov J K 1999 Phys. Rev. B 59 7413Google Scholar
[154] Bernal J D, Fowler R H 1933 J. Chem. Phys. 1 515Google Scholar
[155] Li J C, Burnham C, Kolesnikov A I, Eccleston R S 1999 Phys. Rev. B 59 9088Google Scholar
[156] Kolesnikov A I, Li J C, Ross D K, et al. 1992 Phys. Lett. A 168 308Google Scholar
计量
- 文章访问数: 8385
- PDF下载量: 216
- 被引次数: 0