搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响

汪胜晗 李占龙 孙成林 里佐威 门志伟

引用本文:
Citation:

激光诱导等离子体对水OH伸缩振动受激拉曼散射的影响

汪胜晗, 李占龙, 孙成林, 里佐威, 门志伟

Influence of laser-induced plasma on stimulated Raman scatting of OH stretching vibrational from water molecules

Wang Sheng-Han, Li Zhan-Long, Sun Cheng-Lin, Li Zuo-Wei, Men Zhi-Wei
PDF
导出引用
  • 利用532 nm脉冲激光进行水的受激拉曼散射研究,通过改变激光焦点与水-空气界面的距离,获得截然不同的OH伸缩振动受激斯托克斯和反斯托克斯谱线. 焦点距水-空气界面大于20 mm时,只存在 ±3400 cm-1的斯托克斯和反斯托克斯谱线;焦点距离水-空气界面小于20 mm时,存在±3000和± 3400 cm-1的斯托克斯和反斯托克斯谱线;继续缩小焦点与水-空气界面的距离,3000 cm-1谱线被增强,而3400 cm-1谱线被削弱. 研究结果表明,激光诱导水产生的等离子体增强了局部水分子的氢键,导致OH伸缩振动红移,同时过剩电子增强了水的OH伸缩振动受激拉曼散射.
    532 nm pulse beam is used to induce the stimulated Raman scatting of water molecules. Different Stocks and anti-Stocks characteristic peaks of OH stretching vibrational from water molecules are obtained when the position of the focal spot is changed. The unique ± 3400 cm-1 Stokes characteristic peak with its anti-Stokes is present when the distance between focal spot and interface is fixed to be over 20 mm; both ±3000 cm-1 and ±3400 cm-1 with their anti-Stokes exist when the distance is reduced under 20 mm; both characteristic peaks are enhanced especially the 3000 cm-1 peak whose change is more remarkable when the spot continues to move up. Experimental results indicate that laser-induced plasma generated from water molecules enhances the stimulated Raman scattering of OH stretching vibrational from water molecules by affecting hydrogen bonds between water molecules and OH from single water molecules.
    • 基金项目: 国家自然科学基金(批准号:11104106,11374123)、国家基础科学人才培养基金(批准号:J1103202)、吉林省科技厅项目(批准号:201101037,201201030,20130101017JC,20140101173JC,20140204077GX)和中国博士后科学基 金(批准号:2012M520669,2013M530973)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11104106, 11374123), the National Basic Science Personnel Training Fund, China (Grant No. J1103202), the Science and Technology Department of Jilin Province, China (Grant Nos. 201101037, 201201030, 20130101017JC, 20140101173JC, 20140204077GX), and the Program of China Postdoctoral Science Foundation (Grant Nos. 2012M520669, 2013M530973).
    [1]

    Lee S, Kim J, Lee S, Kim K S 1997 Phys. Rev. Lett. 79 2038

    [2]

    Salzmann C G, Hallbrucker A, Fommey J K, Mayer E 2006 Chem. Phys. Lett. 429 469

    [3]

    Chang H C, Huang K H, Yeh Y L, Lim S H 2000 Chem. Phys. Lett. 326 93

    [4]

    Li F F, Cui Q L, He Z, Cui T, Zhang J, Zhou Q, Zou G T 2005 J. Chem. Phys. 123 174511

    [5]

    Liu C S, Liang Y F, Zhu Z G, Li G X 2005 Chin. Phys. B 14 785

    [6]

    Wei J F, Sun L Q, Zhang K, Hu X Y 2014 Chin. Phys. B 23 074209

    [7]

    Fang W H, Li Z W, Sun C L, Li Z L, Song W, Men Z W, He L Q 2012 Chin. Phys. B 21 034211

    [8]

    Sceats M, Rice S A, Butler J E 1975 J. Chem. Phys. 63 5390

    [9]

    Mikenda W, Steinböck S 1996 J. Mol. Struct. 384 159

    [10]

    Yui H, Yoneda Y, Kitamori T, Sawada T 1999 Phys. Rev. Lett. 82 4110

    [11]

    Yui H, Sawada T 2000 Phys. Rev. Lett. 85 3512

    [12]

    Zhang L, Dong Q L, Zhao J, Wang S J, Sheng Z M, He M Q, Zhang J 2009 Acta Phys. Sin. 58 1837 (in Chinese) [张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰 2009 物理学报 58 1837]

    [13]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [14]

    Grant K J, Paul G L 1990 Appl. Spectrosc. 44 1349

    [15]

    Telle H R, Laubereau A 1980 Opt. Commun. 34 287

    [16]

    Yui H, Fujiwara H, Sawada T 2002 Chem. Phys. Lett. 360 53

    [17]

    Yui H, Sawada T 2003 Rev. Sci. Instrum. 74 456

    [18]

    Yui H, Nakajima T, Hirao K, Sawada T J 2003 Phys. Chem. A 107 968

    [19]

    Li Z L, Wang Y D, Zhou M, Men Z W, Sun C L, Li Z W 2012 Acta Phys. Sin. 61 064217 (in Chinese) [李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威 2012 物理学报 61 064217]

    [20]

    Graener H, Seifert G, Laubereau A 1991 Phys. Rev. Lett. 66 2092

    [21]

    Yui H, Kato H, Someya Y 2008 J. Raman Spectrosc. 39 1688

    [22]

    Walrafen G E 1967 J. Chem. Phys. 47 114

    [23]

    Yui H 2010 Anal. Bioanal. Chem. 397 1181

    [24]

    Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205 (in Chinese) [朱竹青, 王晓雷 2011 物理学报 60 085205]

    [25]

    Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C, Hu B T 2013 Acta Phys. Sin. 62 045201 (in Chinese) [刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛 2013 物理学报 62 045201]

    [26]

    Xu Z J 2013 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese) [徐智君 2013 博士学位论文 (天津: 南开大学)]

  • [1]

    Lee S, Kim J, Lee S, Kim K S 1997 Phys. Rev. Lett. 79 2038

    [2]

    Salzmann C G, Hallbrucker A, Fommey J K, Mayer E 2006 Chem. Phys. Lett. 429 469

    [3]

    Chang H C, Huang K H, Yeh Y L, Lim S H 2000 Chem. Phys. Lett. 326 93

    [4]

    Li F F, Cui Q L, He Z, Cui T, Zhang J, Zhou Q, Zou G T 2005 J. Chem. Phys. 123 174511

    [5]

    Liu C S, Liang Y F, Zhu Z G, Li G X 2005 Chin. Phys. B 14 785

    [6]

    Wei J F, Sun L Q, Zhang K, Hu X Y 2014 Chin. Phys. B 23 074209

    [7]

    Fang W H, Li Z W, Sun C L, Li Z L, Song W, Men Z W, He L Q 2012 Chin. Phys. B 21 034211

    [8]

    Sceats M, Rice S A, Butler J E 1975 J. Chem. Phys. 63 5390

    [9]

    Mikenda W, Steinböck S 1996 J. Mol. Struct. 384 159

    [10]

    Yui H, Yoneda Y, Kitamori T, Sawada T 1999 Phys. Rev. Lett. 82 4110

    [11]

    Yui H, Sawada T 2000 Phys. Rev. Lett. 85 3512

    [12]

    Zhang L, Dong Q L, Zhao J, Wang S J, Sheng Z M, He M Q, Zhang J 2009 Acta Phys. Sin. 58 1837 (in Chinese) [张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰 2009 物理学报 58 1837]

    [13]

    Braun A, Korn G, Liu X, Du D, Squier J, Mourou G 1995 Opt. Lett. 20 73

    [14]

    Grant K J, Paul G L 1990 Appl. Spectrosc. 44 1349

    [15]

    Telle H R, Laubereau A 1980 Opt. Commun. 34 287

    [16]

    Yui H, Fujiwara H, Sawada T 2002 Chem. Phys. Lett. 360 53

    [17]

    Yui H, Sawada T 2003 Rev. Sci. Instrum. 74 456

    [18]

    Yui H, Nakajima T, Hirao K, Sawada T J 2003 Phys. Chem. A 107 968

    [19]

    Li Z L, Wang Y D, Zhou M, Men Z W, Sun C L, Li Z W 2012 Acta Phys. Sin. 61 064217 (in Chinese) [李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威 2012 物理学报 61 064217]

    [20]

    Graener H, Seifert G, Laubereau A 1991 Phys. Rev. Lett. 66 2092

    [21]

    Yui H, Kato H, Someya Y 2008 J. Raman Spectrosc. 39 1688

    [22]

    Walrafen G E 1967 J. Chem. Phys. 47 114

    [23]

    Yui H 2010 Anal. Bioanal. Chem. 397 1181

    [24]

    Zhu Z Q, Wang X L 2011 Acta Phys. Sin. 60 085205 (in Chinese) [朱竹青, 王晓雷 2011 物理学报 60 085205]

    [25]

    Liu X L, Sun S H, Cao Y, Sun M Z, Liu Q C, Hu B T 2013 Acta Phys. Sin. 62 045201 (in Chinese) [刘小亮, 孙少华, 曹瑜, 孙铭泽, 刘情操, 胡碧涛 2013 物理学报 62 045201]

    [26]

    Xu Z J 2013 Ph. D. Dissertation (Tianjin: Nankai University) (in Chinese) [徐智君 2013 博士学位论文 (天津: 南开大学)]

  • [1] 龙欣宇, 王佩佩, 安红海, 熊俊, 谢志勇, 方智恒, 孙今人, 王琛. 宽带激光辐照平面薄膜靶的近前向散射. 物理学报, 2024, 73(12): 125202. doi: 10.7498/aps.73.20231613
    [2] 刘庆康, 张旭, 蔡洪波, 张恩浩, 高妍琦, 朱少平. 强度调制宽带激光对受激拉曼散射动理学爆发的抑制. 物理学报, 2024, 73(5): 055202. doi: 10.7498/aps.73.20231679
    [3] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1 μm波段水分子的CO2加宽系数. 物理学报, 2022, 71(20): 203301. doi: 10.7498/aps.71.20220700
    [4] 杨刚, 郑庭, 程启昊, 张会臣. 非牛顿流体剪切稀化特性的分子动力学模拟. 物理学报, 2021, 70(12): 124701. doi: 10.7498/aps.70.20202116
    [5] 秦晓玲, 朱栩量, 曹靖雯, 王浩诚, 张鹏. 冰的氢键振动研究. 物理学报, 2021, 70(14): 146301. doi: 10.7498/aps.70.20210013
    [6] 吴钟书, 赵耀, 翁苏明, 陈民, 盛政明. 非均匀等离子体中1/4临界密度附近受激散射的非线性演化. 物理学报, 2019, 68(19): 195202. doi: 10.7498/aps.68.20190883
    [7] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [8] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发. 物理学报, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [9] 张兆慧, 韩奎, 曹娟, 王帆, 杨丽娟. 有机分子超薄膜的结构对摩擦的影响. 物理学报, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [10] 李占龙, 王一丁, 周密, 门志伟, 孙成林, 里佐威. 水的低频受激拉曼散射. 物理学报, 2012, 61(6): 064217. doi: 10.7498/aps.61.064217
    [11] 门志伟, 里佐威, 李占龙, 周密, 孙成林, 何丽桥. 分子间费米共振增强二元溶液体系的受激拉曼散射研究. 物理学报, 2011, 60(9): 094217. doi: 10.7498/aps.60.094217
    [12] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究. 物理学报, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [13] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [14] 张兆慧, 韩 奎, 李海鹏, 唐 刚, 吴玉喜, 王洪涛, 白 磊. Langmuir-Blodgett膜摩擦分子动力学模拟和机理研究. 物理学报, 2008, 57(5): 3160-3165. doi: 10.7498/aps.57.3160
    [15] 胡大伟, 王正平, 张怀金, 许心光, 王继扬, 邵宗书. YbVO4晶体的受激拉曼散射. 物理学报, 2008, 57(3): 1714-1718. doi: 10.7498/aps.57.1714
    [16] 邓 莉, 孙真荣, 林位株, 文锦辉. 亚10 fs激光脉冲产生中的受激拉曼散射与四波混频效应. 物理学报, 2008, 57(12): 7668-7673. doi: 10.7498/aps.57.7668
    [17] 梁慧敏, 杜惊雷, 王宏波, 王治华, 罗时荣, 杨经国, 郑万国, 魏晓峰, 朱启华, 黄晓军, 王晓东, 郭 仪. 不同波长激光激发下C6H12受激拉曼散射模式竞争. 物理学报, 2007, 56(12): 6994-6998. doi: 10.7498/aps.56.6994
    [18] 普小云, 杨 睿, 王亚丽, 陈天江, 江 楠. 用染料激光增益降低二元混合物中少量化合物的受激拉曼散射可探测浓度. 物理学报, 2004, 53(8): 2509-2514. doi: 10.7498/aps.53.2509
    [19] 普小云, 杨 正, 江 楠, 陈永康, 戴 宏. 用激光增益获取弱增益拉曼模式的受激拉曼散射光谱. 物理学报, 2003, 52(10): 2443-2448. doi: 10.7498/aps.52.2443
    [20] 张喜和, 王兆民, 万春明. 光纤-氮系统的受激拉曼散射. 物理学报, 2002, 51(6): 1251-1255. doi: 10.7498/aps.51.1251
计量
  • 文章访问数:  6499
  • PDF下载量:  836
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-05-29
  • 刊出日期:  2014-10-05

/

返回文章
返回