-
本文运用含时密度泛函理论和分子动力学非绝热耦合的方法, 研究了水分子在不同极化方向的激光场中的电离和动力学行为. 计算结果表明, 对应相同的极化方向, 随着激光强度的增加, 水分子的电离增强; 对于相同强度的激光, 当激光极化方向沿水分子对称轴方向时, 水分子的电离最强, 当激光极化方向垂直水分子对称轴方向时, 水分子电离受到最大程度的抑制. 对水分子偶极矩的研究表明, 当分子处于线性响应区域时, x方向的激光只能激发起x方向的偶极振动而y方向的激光只能激发起y方向的偶极振动. 对水分子的键长和键角的研究表明, 在激光场中水分子的键长变长, 键角变大, 但变化幅度随着激光极化角的增大而减小. 此外, 研究还发现, 虽然在不同极化方向的激光脉冲的驱动下, 水分子OH键的振动频率与激光频率相当, 在脉冲关闭后, 振动频率减小, 但激光场的极化方向对水分子振动模式具有选择性.By means of the time-dependent density functional theory (TDDFT) (applied to valence electrons), coupled with non-adiabatically molecular dynamics of ions, the excitation and dynamics of water molecules in a laser field with different polarizations have been explored. It is found that for the same polarization, the water molecule ionization can be enhanced with increasing laser intensity, while the laser intensity keeps constant, the ionization shows a maximum when the polarization is along the molecular symmetry axis, and the ionization is suppressed maximally when the polarization is perpendicular to the symmetry axis of the water molecule. The study of the dipole moment indicates that when the molecule is in the linear response region, there is only the oscillation of Dx for the case of the polarization along the x axis, while there is only the oscillation of Dy for the case of the polarization along the y axis. The bond lengths and the bond angle of H2O molecules are enlarged, while their may ictudes decrease with increasing polarization angle. Furthermore, it is found that in different polarization cases the vibration frequency of OH bonds is almost the same as the laser frequency during the action of the laser field, and it decreases after the laser pulse is switched off; however, the vibration mode of H2O molecule is sensitive to the laser polarization.
-
Keywords:
- TDDFT /
- molecular dynamics /
- water molecule /
- ionization
[1] Bukowski R, Szalewicz K, Groenenboon G C, Avoird Ad van der 2007 Science 2 1249
[2] Lo S Y, Li W C, Huang S H 2000 Medi. Hypoth 54 948
[3] Burda K, Bader K P, Schimd G H 2001 FEBS Letters 491 81
[4] Auer B M, Skinner J L 2009 Chem. Phys. Lett. 470 13
[5] Bour P 2002 Chem. Phys. Lett. 365 82
[6] Kryachko E S 1999 Chem. Phys. Lett. 314 353
[7] Qian P, Song W, Lu L 2010 Inter. J. Quan. Chem. 110 1923
[8] Suzuki K 1998 Atmospheric Research 46 371
[9] Estrin D A, Paglieri L, Corongiu G 1996 J. Phys. Chem. 100 8701
[10] Geissler P L, Dellago C, Chandler D 2000 Chem. Phys. Lett. 321 225
[11] Garbuio V, Cascella M, Reining L, Del Sole R, Pulci O 2006 Phys. Rev. Letters 97 137402
[12] Hahn P H, Schmidt W G, Seino K, Preuss M, Bechstedt F, Bernholc J 2005 Phys. Rev. Lett. 94 037404
[13] Hermann A, Schmidt W G, Schwerdtfeger P 2008 Phys. Rev. Lett. 100 207403
[14] Garbuio V, Cascella M, Pulci O 2009 J. Phys. : Condens. Matt. 21 033101
[15] Tajima T, Mima K, Baldis H 2000 High-Field Science (New York: Kluwer Academic/Plenum)
[16] Xiong D L, Wang M S, Yang C L, Tong X F, Ma N 2010 Chin. Phys. B 19 103303
[17] Wang S F, Qin Y D, Yang H, Wang D L, Zhu C J, Gong Q H 2001 Chin. Phys. 10 735
[18] Chen D Y, Zhang S, Xia Y Q 2009 Chin. Phys. B 18 3073
[19] Wong M C H, Brichta J P, Bhardwaj V R 2010 Optics Letters 35 1947
[20] Zhao S F, Jin Chen, Lucchese R R, Le Anh-Thu, Lin C D 2011 Phys. Rev. A 83 033409
[21] Son S K, Chu S I 2009 Chem. Phys. 366 91
[22] Petretti S, Saenz A, Castro A, Decleva P 2012 Chem. Phys. doi:10.1016/j.chemphys.2012.01.011
[23] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[24] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703
[25] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[26] Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115
[27] Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)
[28] Benedict W S, Gailar N, Plyler E K 1956 J. Chem. Phys. 24 1139
[29] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[30] Lemus R 2004 J. Mol. Spectrosc. 225 73
-
[1] Bukowski R, Szalewicz K, Groenenboon G C, Avoird Ad van der 2007 Science 2 1249
[2] Lo S Y, Li W C, Huang S H 2000 Medi. Hypoth 54 948
[3] Burda K, Bader K P, Schimd G H 2001 FEBS Letters 491 81
[4] Auer B M, Skinner J L 2009 Chem. Phys. Lett. 470 13
[5] Bour P 2002 Chem. Phys. Lett. 365 82
[6] Kryachko E S 1999 Chem. Phys. Lett. 314 353
[7] Qian P, Song W, Lu L 2010 Inter. J. Quan. Chem. 110 1923
[8] Suzuki K 1998 Atmospheric Research 46 371
[9] Estrin D A, Paglieri L, Corongiu G 1996 J. Phys. Chem. 100 8701
[10] Geissler P L, Dellago C, Chandler D 2000 Chem. Phys. Lett. 321 225
[11] Garbuio V, Cascella M, Reining L, Del Sole R, Pulci O 2006 Phys. Rev. Letters 97 137402
[12] Hahn P H, Schmidt W G, Seino K, Preuss M, Bechstedt F, Bernholc J 2005 Phys. Rev. Lett. 94 037404
[13] Hermann A, Schmidt W G, Schwerdtfeger P 2008 Phys. Rev. Lett. 100 207403
[14] Garbuio V, Cascella M, Pulci O 2009 J. Phys. : Condens. Matt. 21 033101
[15] Tajima T, Mima K, Baldis H 2000 High-Field Science (New York: Kluwer Academic/Plenum)
[16] Xiong D L, Wang M S, Yang C L, Tong X F, Ma N 2010 Chin. Phys. B 19 103303
[17] Wang S F, Qin Y D, Yang H, Wang D L, Zhu C J, Gong Q H 2001 Chin. Phys. 10 735
[18] Chen D Y, Zhang S, Xia Y Q 2009 Chin. Phys. B 18 3073
[19] Wong M C H, Brichta J P, Bhardwaj V R 2010 Optics Letters 35 1947
[20] Zhao S F, Jin Chen, Lucchese R R, Le Anh-Thu, Lin C D 2011 Phys. Rev. A 83 033409
[21] Son S K, Chu S I 2009 Chem. Phys. 366 91
[22] Petretti S, Saenz A, Castro A, Decleva P 2012 Chem. Phys. doi:10.1016/j.chemphys.2012.01.011
[23] Kohn W, Sham L J 1965 Phys. Rev. 140 A1133
[24] Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703
[25] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
[26] Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115
[27] Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)
[28] Benedict W S, Gailar N, Plyler E K 1956 J. Chem. Phys. 24 1139
[29] Corkum P B 1993 Phys. Rev. Lett. 71 1994
[30] Lemus R 2004 J. Mol. Spectrosc. 225 73
计量
- 文章访问数: 7241
- PDF下载量: 772
- 被引次数: 0