搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒强激光场中水分子的电离激发

王志萍 吴亚敏 鲁超 张秀梅 何跃娟

引用本文:
Citation:

飞秒强激光场中水分子的电离激发

王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟

Irradiation of the water molecule by the femtosecond laser field

Wang Zhi-Ping, Wu Ya-Min, Lu Chao, Zhang Xiu-Mei, He Yue-Juan
PDF
导出引用
  • 本文运用含时密度泛函理论和分子动力学非绝热耦合的方法, 研究了水分子在不同极化方向的激光场中的电离和动力学行为. 计算结果表明, 对应相同的极化方向, 随着激光强度的增加, 水分子的电离增强; 对于相同强度的激光, 当激光极化方向沿水分子对称轴方向时, 水分子的电离最强, 当激光极化方向垂直水分子对称轴方向时, 水分子电离受到最大程度的抑制. 对水分子偶极矩的研究表明, 当分子处于线性响应区域时, x方向的激光只能激发起x方向的偶极振动而y方向的激光只能激发起y方向的偶极振动. 对水分子的键长和键角的研究表明, 在激光场中水分子的键长变长, 键角变大, 但变化幅度随着激光极化角的增大而减小. 此外, 研究还发现, 虽然在不同极化方向的激光脉冲的驱动下, 水分子OH键的振动频率与激光频率相当, 在脉冲关闭后, 振动频率减小, 但激光场的极化方向对水分子振动模式具有选择性.
    By means of the time-dependent density functional theory (TDDFT) (applied to valence electrons), coupled with non-adiabatically molecular dynamics of ions, the excitation and dynamics of water molecules in a laser field with different polarizations have been explored. It is found that for the same polarization, the water molecule ionization can be enhanced with increasing laser intensity, while the laser intensity keeps constant, the ionization shows a maximum when the polarization is along the molecular symmetry axis, and the ionization is suppressed maximally when the polarization is perpendicular to the symmetry axis of the water molecule. The study of the dipole moment indicates that when the molecule is in the linear response region, there is only the oscillation of Dx for the case of the polarization along the x axis, while there is only the oscillation of Dy for the case of the polarization along the y axis. The bond lengths and the bond angle of H2O molecules are enlarged, while their may ictudes decrease with increasing polarization angle. Furthermore, it is found that in different polarization cases the vibration frequency of OH bonds is almost the same as the laser frequency during the action of the laser field, and it decreases after the laser pulse is switched off; however, the vibration mode of H2O molecule is sensitive to the laser polarization.
    • 基金项目: 国家自然科学基金 (批准号: 61178032), 中央高校基本科研业务费专项资金 (批准号: JUSRP11A21) 和江苏省高等教育学会十一五教育科学规划(批准号: JS053) 资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178032), the Fundamental Research Funds for the Central Universities (Grant No. 11A21), and the Eleven Five Planning Issues for Higher Education of Jiangsu Province (Grant No. JS053).
    [1]

    Bukowski R, Szalewicz K, Groenenboon G C, Avoird Ad van der 2007 Science 2 1249

    [2]

    Lo S Y, Li W C, Huang S H 2000 Medi. Hypoth 54 948

    [3]

    Burda K, Bader K P, Schimd G H 2001 FEBS Letters 491 81

    [4]

    Auer B M, Skinner J L 2009 Chem. Phys. Lett. 470 13

    [5]

    Bour P 2002 Chem. Phys. Lett. 365 82

    [6]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [7]

    Qian P, Song W, Lu L 2010 Inter. J. Quan. Chem. 110 1923

    [8]

    Suzuki K 1998 Atmospheric Research 46 371

    [9]

    Estrin D A, Paglieri L, Corongiu G 1996 J. Phys. Chem. 100 8701

    [10]

    Geissler P L, Dellago C, Chandler D 2000 Chem. Phys. Lett. 321 225

    [11]

    Garbuio V, Cascella M, Reining L, Del Sole R, Pulci O 2006 Phys. Rev. Letters 97 137402

    [12]

    Hahn P H, Schmidt W G, Seino K, Preuss M, Bechstedt F, Bernholc J 2005 Phys. Rev. Lett. 94 037404

    [13]

    Hermann A, Schmidt W G, Schwerdtfeger P 2008 Phys. Rev. Lett. 100 207403

    [14]

    Garbuio V, Cascella M, Pulci O 2009 J. Phys. : Condens. Matt. 21 033101

    [15]

    Tajima T, Mima K, Baldis H 2000 High-Field Science (New York: Kluwer Academic/Plenum)

    [16]

    Xiong D L, Wang M S, Yang C L, Tong X F, Ma N 2010 Chin. Phys. B 19 103303

    [17]

    Wang S F, Qin Y D, Yang H, Wang D L, Zhu C J, Gong Q H 2001 Chin. Phys. 10 735

    [18]

    Chen D Y, Zhang S, Xia Y Q 2009 Chin. Phys. B 18 3073

    [19]

    Wong M C H, Brichta J P, Bhardwaj V R 2010 Optics Letters 35 1947

    [20]

    Zhao S F, Jin Chen, Lucchese R R, Le Anh-Thu, Lin C D 2011 Phys. Rev. A 83 033409

    [21]

    Son S K, Chu S I 2009 Chem. Phys. 366 91

    [22]

    Petretti S, Saenz A, Castro A, Decleva P 2012 Chem. Phys. doi:10.1016/j.chemphys.2012.01.011

    [23]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [24]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [27]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)

    [28]

    Benedict W S, Gailar N, Plyler E K 1956 J. Chem. Phys. 24 1139

    [29]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [30]

    Lemus R 2004 J. Mol. Spectrosc. 225 73

  • [1]

    Bukowski R, Szalewicz K, Groenenboon G C, Avoird Ad van der 2007 Science 2 1249

    [2]

    Lo S Y, Li W C, Huang S H 2000 Medi. Hypoth 54 948

    [3]

    Burda K, Bader K P, Schimd G H 2001 FEBS Letters 491 81

    [4]

    Auer B M, Skinner J L 2009 Chem. Phys. Lett. 470 13

    [5]

    Bour P 2002 Chem. Phys. Lett. 365 82

    [6]

    Kryachko E S 1999 Chem. Phys. Lett. 314 353

    [7]

    Qian P, Song W, Lu L 2010 Inter. J. Quan. Chem. 110 1923

    [8]

    Suzuki K 1998 Atmospheric Research 46 371

    [9]

    Estrin D A, Paglieri L, Corongiu G 1996 J. Phys. Chem. 100 8701

    [10]

    Geissler P L, Dellago C, Chandler D 2000 Chem. Phys. Lett. 321 225

    [11]

    Garbuio V, Cascella M, Reining L, Del Sole R, Pulci O 2006 Phys. Rev. Letters 97 137402

    [12]

    Hahn P H, Schmidt W G, Seino K, Preuss M, Bechstedt F, Bernholc J 2005 Phys. Rev. Lett. 94 037404

    [13]

    Hermann A, Schmidt W G, Schwerdtfeger P 2008 Phys. Rev. Lett. 100 207403

    [14]

    Garbuio V, Cascella M, Pulci O 2009 J. Phys. : Condens. Matt. 21 033101

    [15]

    Tajima T, Mima K, Baldis H 2000 High-Field Science (New York: Kluwer Academic/Plenum)

    [16]

    Xiong D L, Wang M S, Yang C L, Tong X F, Ma N 2010 Chin. Phys. B 19 103303

    [17]

    Wang S F, Qin Y D, Yang H, Wang D L, Zhu C J, Gong Q H 2001 Chin. Phys. 10 735

    [18]

    Chen D Y, Zhang S, Xia Y Q 2009 Chin. Phys. B 18 3073

    [19]

    Wong M C H, Brichta J P, Bhardwaj V R 2010 Optics Letters 35 1947

    [20]

    Zhao S F, Jin Chen, Lucchese R R, Le Anh-Thu, Lin C D 2011 Phys. Rev. A 83 033409

    [21]

    Son S K, Chu S I 2009 Chem. Phys. 366 91

    [22]

    Petretti S, Saenz A, Castro A, Decleva P 2012 Chem. Phys. doi:10.1016/j.chemphys.2012.01.011

    [23]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [24]

    Goedecker S, Teter M, Hutter J 1996 Phys. Rev. B 54 1703

    [25]

    Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244

    [26]

    Legrand C, Suraud E, Reinhard P G 2002 J. Phys. B 35 1115

    [27]

    Faisal F H M 1987 Theory of Multiphoton Processes (New York: Plenum)

    [28]

    Benedict W S, Gailar N, Plyler E K 1956 J. Chem. Phys. 24 1139

    [29]

    Corkum P B 1993 Phys. Rev. Lett. 71 1994

    [30]

    Lemus R 2004 J. Mol. Spectrosc. 225 73

  • [1] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1μm波段水分子的CO2加宽系数研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220700
    [2] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [3] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [4] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [5] 鲁桃, 王瑾, 付旭, 徐彪, 叶飞宏, 冒进斌, 陆云清, 许吉. 采用密度泛函理论与分子动力学对聚甲基丙烯酸甲酯双折射性的理论计算. 物理学报, 2016, 65(21): 210301. doi: 10.7498/aps.65.210301
    [6] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [7] 张红, 尹海峰, 张开彪, 林家和. 基于含时密度泛函理论的表面等离激元研究进展. 物理学报, 2015, 64(7): 077303. doi: 10.7498/aps.64.077303
    [8] 韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林. 碳纳米管阵列水渗透性质的研究. 物理学报, 2015, 64(23): 230201. doi: 10.7498/aps.64.230201
    [9] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [10] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [11] 王志萍, 朱云, 吴亚敏, 张秀梅. 质子与羟基碰撞的含时密度泛函理论研究. 物理学报, 2014, 63(2): 023401. doi: 10.7498/aps.63.023401
    [12] 王志萍, 朱云, 吴鑫, 吴亚敏. CO分子在线性极化飞秒激光场中的TDDFT研究. 物理学报, 2013, 62(23): 233102. doi: 10.7498/aps.62.233102
    [13] 王志萍, 陈健, 吴寿煜, 吴亚敏. 碳分子线C5在激光场中的含时密度泛函理论研究. 物理学报, 2013, 62(12): 123302. doi: 10.7498/aps.62.123302
    [14] 何曼丽, 王晓, 高思峰. 电子与氢及其同位素分子碰撞的非解离性电离截面研究 . 物理学报, 2012, 61(4): 043404. doi: 10.7498/aps.61.043404
    [15] 马颖. 非晶态石英的变电荷分子动力学模拟. 物理学报, 2011, 60(2): 026101. doi: 10.7498/aps.60.026101
    [16] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究. 物理学报, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [17] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [18] 金晓林, 杨中海. 电子回旋共振放电的电离特性PIC/MCC模拟(Ⅰ)——物理模型与理论方法. 物理学报, 2006, 55(11): 5930-5934. doi: 10.7498/aps.55.5930
    [19] 崔 磊, 顾 斌, 滕玉永, 胡永金, 赵 江, 曾祥华. 脉冲激光偏振方向对氮分子高次谐波的影响--基于含时密度泛函理论的模拟. 物理学报, 2006, 55(9): 4691-4694. doi: 10.7498/aps.55.4691
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  4049
  • PDF下载量:  753
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-24
  • 修回日期:  2012-12-10
  • 刊出日期:  2013-04-05

飞秒强激光场中水分子的电离激发

  • 1. 江南大学理学院, 无锡 214122
    基金项目: 国家自然科学基金 (批准号: 61178032), 中央高校基本科研业务费专项资金 (批准号: JUSRP11A21) 和江苏省高等教育学会十一五教育科学规划(批准号: JS053) 资助的课题.

摘要: 本文运用含时密度泛函理论和分子动力学非绝热耦合的方法, 研究了水分子在不同极化方向的激光场中的电离和动力学行为. 计算结果表明, 对应相同的极化方向, 随着激光强度的增加, 水分子的电离增强; 对于相同强度的激光, 当激光极化方向沿水分子对称轴方向时, 水分子的电离最强, 当激光极化方向垂直水分子对称轴方向时, 水分子电离受到最大程度的抑制. 对水分子偶极矩的研究表明, 当分子处于线性响应区域时, x方向的激光只能激发起x方向的偶极振动而y方向的激光只能激发起y方向的偶极振动. 对水分子的键长和键角的研究表明, 在激光场中水分子的键长变长, 键角变大, 但变化幅度随着激光极化角的增大而减小. 此外, 研究还发现, 虽然在不同极化方向的激光脉冲的驱动下, 水分子OH键的振动频率与激光频率相当, 在脉冲关闭后, 振动频率减小, 但激光场的极化方向对水分子振动模式具有选择性.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回