搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳纳米管阵列水渗透性质的研究

韩典荣 朱兴凤 戴亚飞 程承平 罗成林

引用本文:
Citation:

碳纳米管阵列水渗透性质的研究

韩典荣, 朱兴凤, 戴亚飞, 程承平, 罗成林

Water permeability in carbon nanotube arrays

Han Dian-Rong, Zhu Xing-Feng, Dai Ya-Fei, Cheng Cheng-Ping, Luo Cheng-Lin
PDF
导出引用
  • 碳纳米管阵列组成的碳纳米管分子膜在生物学分子器件等方面有重要应用. 本文利用分子动力学方法计算研究水分子对(11, 11)碳纳米管阵列的渗透过程. 结果发现, 只有当阵列间隙面积大于57.91 Å2时, 水分子才能进入阵列间隙中, 并揭示了碳管内部、阵列间隙内水分子结构随相邻碳管间距变化的演化趋势以及管内外水分子电偶极矩的分布特性.
    The membrane composed of carbon nanotube arrays may be widely used in biological molecular devices, image display area and optoelectronic devices. In this paper, the water permeability of the (11, 11) carbon nanotube arrays is simulated by using the SPC/E water model and the molecular dynamics program LAMMPS at 300 K. It is found that the distance between carbon nanotubes has a significant impact on water density distribution and the electric dipole moment orientation. Regardless of the distance between the neighboring tubes, water molecules will get into the nanotubes and form a double-layer cylindrical ring structure inside the nanotubes. However, water molecules can fill into the interstitial space of the nanotube array only when the nearest distance between the neighbor the tubes is greater than 3.4 Å, or the interstitial cross area becomes greater than 57.91 Å2. As the interstitial space increases, the structure of water molecules in the interstitial space will evolve from disconnected single-file chains to boundary-shared close-packing-like columnar circles. Meanwhile, the radius of the water ring inside the nanotube will increase and its boundary becomes more sharp due to the attractions from those water molecules filled in the interstitial space. Relative to the tube axis, the distributions of the water molecular electric dipole moments in the interstitial space depend upon water structures. Under the condition of single-file chain, the distribution exhibits a bimodal characteristic, which is very similar to the distribution of water dipole moments inside the nanotube. Whereas, for the boundary-shared close-packing-like water columnar circle, the distribution of dipole moments shows a unimodal characteristic and the peak corresponds to the angle 90°. This indicates that the preferred orientation of the water dipoles points to the direction perpendicular to the tube axis. These conclusions are helpful in the understanding of the water transport properties in carbon nanotube arrays.
      通信作者: 罗成林, clluo@njnu.edu.cn
    • 基金项目: 国家自然科学基金青年基金(批准号: 21203097), 江苏省高校自然科学研究项目(批准号: 14KJB140006)和江苏高校优势学科建设工程资助项目课题.
      Corresponding author: Luo Cheng-Lin, clluo@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21203097), the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Grant No. 14KJB140006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
    [1]

    De Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sánchez J C, Elías A L, Mancilla R, Arrellín G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y, Li X, Jiang J, Du H, Zhao L, Zhao Y 2010 ACS Nano 4 5755

    [4]

    Sui H X, Han B G, Lee J K, Walian P, Jap B K 2001 Nature 414 872

    [5]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [6]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [7]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [8]

    Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014

    [9]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [10]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

    [11]

    Su J, Guo H 2011 ACS Nano 5 351

    [12]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275

    [13]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞 2015 物理学报 64 116101]

    [14]

    Sofia S, Chaniotakis N A 2003 Anal. Bioanal. Chem. 375 103

    [15]

    Wang K, Fishman H A, Dai H J, Harris J S 2006 Nano Lett. 6 2043

    [16]

    Li S Y, Liao G M, Liu Z P, Pan Y Y, Wu Q, Weng Y Y, Zhang X Y, Yang Z H, Tsui Ophelia K C 2014 J. Mater. Chem. A 2 12171

    [17]

    Fasano M, Chiavazzo E, Asinari P 2014 Nanoscale Res Lett. 9 559

    [18]

    Ozden S, Ge L H, Narayanan T N, Hart Amelia H. C, Yang H S, Sridhar S, Vajtai R, Ajayan P M 2014 ACS Appl. Mater. Interfaces. 6 10608

    [19]

    Kalra A, Garde S, Hummer G 2003 Proc Natl Acad Sci. 100 10175

    [20]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [21]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [22]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [25]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [26]

    Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414

    [27]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [28]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 物理学报 63 086102]

    [29]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P J 2003 Phys. Chem. B 107 1345

    [30]

    Nosé S 2002 Mol. Phys. 100 191

    [31]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [32]

    Thomas J A, McGaughey A J 2008 J. Chem. Phys. 128 084715-1

    [33]

    Rinne K F, Gekle F S, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

  • [1]

    De Groot B L, Grubmller H 2001 Science 294 2353

    [2]

    Carrero-Sánchez J C, Elías A L, Mancilla R, Arrellín G, Terrones H, Laclette J P, Terrones M 2006 Nano Lett. 6 1609

    [3]

    Yang Y, Li X, Jiang J, Du H, Zhao L, Zhao Y 2010 ACS Nano 4 5755

    [4]

    Sui H X, Han B G, Lee J K, Walian P, Jap B K 2001 Nature 414 872

    [5]

    Majumder M, Chopra N, Andrews R, Hinds B J 2005 Nature 438 44

    [6]

    Holt J K, Park H G, Wang Y M, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A, Bakajin O 2006 Science 312 1034

    [7]

    Corry B 2008 J. Phys. Chem. B 112 1427

    [8]

    Alexiadis A, Kassinos S 2008 Chem. Rev. 108 5014

    [9]

    Duan W H, Wang Q 2010 ACS Nano 4 2338

    [10]

    Joseph S, Aluru N R 2008 Phys. Rev. Lett. 101 064502

    [11]

    Su J, Guo H 2011 ACS Nano 5 351

    [12]

    Wang Y, Zhao Y J, Huang J P 2011 J. Phys. Chem. B 115 13275

    [13]

    Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞 2015 物理学报 64 116101]

    [14]

    Sofia S, Chaniotakis N A 2003 Anal. Bioanal. Chem. 375 103

    [15]

    Wang K, Fishman H A, Dai H J, Harris J S 2006 Nano Lett. 6 2043

    [16]

    Li S Y, Liao G M, Liu Z P, Pan Y Y, Wu Q, Weng Y Y, Zhang X Y, Yang Z H, Tsui Ophelia K C 2014 J. Mater. Chem. A 2 12171

    [17]

    Fasano M, Chiavazzo E, Asinari P 2014 Nanoscale Res Lett. 9 559

    [18]

    Ozden S, Ge L H, Narayanan T N, Hart Amelia H. C, Yang H S, Sridhar S, Vajtai R, Ajayan P M 2014 ACS Appl. Mater. Interfaces. 6 10608

    [19]

    Kalra A, Garde S, Hummer G 2003 Proc Natl Acad Sci. 100 10175

    [20]

    Koga K, Gao G T, Tanaka H, Zeng X C 2001 Nature 412 802

    [21]

    Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188

    [22]

    Zou J, Ji B H, Feng X Q, Gao H J 2006 Small 2 1348

    [23]

    Plimpton S 1995 J. Comput. Phys. 117 1

    [24]

    Berendsen H J C, Grigera J R, Straatsma T P 1987 J. Phys. Chem. 91 6269

    [25]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472

    [26]

    Wang Z, Devel M, Langlet R, Dulmet B 2007 Phys. Rev. B 75 205414

    [27]

    Ni B, Sinnott S B, Mikulski P T, Harrison J A 2002 Phys. Rev. Lett. 88 205505

    [28]

    Chang X 2014 Acta Phys. Sin. 63 086102 (in Chinese) [常旭 2014 物理学报 63 086102]

    [29]

    Werder T, Walther J H, Jaffe R L, Halicioglu T, Koumoutsakos P J 2003 Phys. Chem. B 107 1345

    [30]

    Nosé S 2002 Mol. Phys. 100 191

    [31]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [32]

    Thomas J A, McGaughey A J 2008 J. Chem. Phys. 128 084715-1

    [33]

    Rinne K F, Gekle F S, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780

  • [1] 杨韬, 钱仙妹, 马宏亮, 刘强, 朱文越, 郑健捷, 陈杰, 徐秋怡. 1.1μm波段水分子的CO2加宽系数研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220700
    [2] 陈玉江, 江五贵, 林演文, 郑盼. 一种新型的三壁碳纳米管螺旋振荡器:分子动力学模拟. 物理学报, 2020, 69(22): 228801. doi: 10.7498/aps.69.20200821
    [3] 李灵栋, 叶安娜, 周胜林, 张晓华, 杨朝晖. 碳纳米管受限空间对共轭高分子聚(9,9-二辛基芴-2,7-二基)链段运动行为的影响. 物理学报, 2019, 68(2): 026402. doi: 10.7498/aps.68.20182008
    [4] 李杰杰, 鲁斌斌, 线跃辉, 胡国明, 夏热. 纳米多孔银力学性能表征分子动力学模拟. 物理学报, 2018, 67(5): 056101. doi: 10.7498/aps.67.20172193
    [5] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [6] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [7] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵. 物理学报, 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [8] 杨成兵, 解辉, 刘朝. 锂离子进入碳纳米管端口速度的分子动力学模拟. 物理学报, 2014, 63(20): 200508. doi: 10.7498/aps.63.200508
    [9] 王志萍, 吴亚敏, 鲁超, 张秀梅, 何跃娟. 飞秒强激光场中水分子的电离激发. 物理学报, 2013, 62(7): 073301. doi: 10.7498/aps.62.073301
    [10] 顾芳, 张加宏, 杨丽娟, 顾斌. 应变石墨烯纳米带谐振特性的分子动力学研究. 物理学报, 2011, 60(5): 056103. doi: 10.7498/aps.60.056103
    [11] 马文, 祝文军, 张亚林, 陈开果, 邓小良, 经福谦. 纳米多晶金属样本构建的分子动力学模拟研究. 物理学报, 2010, 59(7): 4781-4787. doi: 10.7498/aps.59.4781
    [12] 陈开果, 祝文军, 马文, 邓小良, 贺红亮, 经福谦. 冲击波在纳米金属铜中传播的分子动力学模拟. 物理学报, 2010, 59(2): 1225-1232. doi: 10.7498/aps.59.1225
    [13] 王伟, 张凯旺, 孟利军, 李中秋, 左学云, 钟建新. 多壁碳纳米管外壁高温蒸发的分子动力学模拟. 物理学报, 2010, 59(4): 2672-2678. doi: 10.7498/aps.59.2672
    [14] 陈明, 闵锐, 周俊明, 胡浩, 林波, 缪灵, 江建军. 碳纳米胶囊中水分子的分子动力学研究. 物理学报, 2010, 59(7): 5148-5153. doi: 10.7498/aps.59.5148
    [15] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟. 物理学报, 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [16] 周国荣, 高秋明. 金属Ni纳米线凝固行为的分子动力学模拟. 物理学报, 2007, 56(3): 1499-1505. doi: 10.7498/aps.56.1499
    [17] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
    [18] 杨全文, 朱如曾. 纳米铜团簇凝结规律的分子动力学研究. 物理学报, 2005, 54(9): 4245-4250. doi: 10.7498/aps.54.4245
    [19] 梁海弋, 王秀喜, 吴恒安, 王宇. 纳米多晶铜微观结构的分子动力学模拟. 物理学报, 2002, 51(10): 2308-2314. doi: 10.7498/aps.51.2308
    [20] 吴恒安, 倪向贵, 王宇, 王秀喜. 金属纳米棒弯曲力学行为的分子动力学模拟. 物理学报, 2002, 51(7): 1412-1415. doi: 10.7498/aps.51.1412
计量
  • 文章访问数:  3320
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-11
  • 修回日期:  2015-08-06
  • 刊出日期:  2015-12-05

碳纳米管阵列水渗透性质的研究

  • 1. 南京师范大学, 物理科学与技术学院, 南京 210023;
  • 2. 江苏省光电科学技术重点实验室, 南京 210023;
  • 3. 江苏第二师范学院, 物理与电子工程学院, 南京 210013
  • 通信作者: 罗成林, clluo@njnu.edu.cn
    基金项目: 国家自然科学基金青年基金(批准号: 21203097), 江苏省高校自然科学研究项目(批准号: 14KJB140006)和江苏高校优势学科建设工程资助项目课题.

摘要: 碳纳米管阵列组成的碳纳米管分子膜在生物学分子器件等方面有重要应用. 本文利用分子动力学方法计算研究水分子对(11, 11)碳纳米管阵列的渗透过程. 结果发现, 只有当阵列间隙面积大于57.91 Å2时, 水分子才能进入阵列间隙中, 并揭示了碳管内部、阵列间隙内水分子结构随相邻碳管间距变化的演化趋势以及管内外水分子电偶极矩的分布特性.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回