-
采用Chin和Chen的动力学算法追踪粒子在体系中的运动情况, 首次研究并对比了粒子在Hénon-Heiles体系与变形Hénon-Heiles六边形体系中的混沌逃逸规律, 在Hénon-Heiles体系中, 对于不同能量范围, 分形维数与逃逸率随能量而改变, 但在变形Hénon-Heiles六边形体系中, 仅在低能区分形维数与逃逸率随能量的改变而变化, 而高能区逃逸率和分形维数趋于稳定值. 并且得到普遍规律, 即不同混沌体系中粒子的混沌逃逸率和粒子逃逸的分形维数呈现较强的线性相关性. 因而分形维数可以作为工具研究混沌体系中粒子的逃逸规律, 在介观器件设计中可以通过研究混沌电子器件的分形维数来表征粒子在器件中的传输行为.From the beginning of the twentieth century the development of nonlinear theory has guided us into a new field of exploration; chaos and fractals are important tools widely used in studying the nonlinear system. Fractal focuses on the description of the physical geometry while Chaos emphasizes the research on the developing process of dynamics coupled with geometry. We have studied the nonlinear behavior of the particles in non-integrable system by means of chaos and fractals.#br#There are fractal structures in a Hénon-Heiles system, by which we can investigate the general escape law of particles in chaotic systems. The motion of particles is traced by dynamical algorithm within the framework of Chin and Chen (2005 Celestial Mechanics and Dynamics Astronomy 91 301). For the first time, we study the escape property of particles in Hénon-Heiles system and make a comparison with it in its hexagon-shaped form. Particles with energy higher than the threshold (1/6) can escape from the Hénon-Heiles system. The self-similar structures are found by calculating the escape time of particles with an energy higher than the threshold for different exit angles. We calculate the escape rate of particles with different energies and make a statistical analysis on the fractal dimensions by ‘box-counting' method. It is that the escape rate and fractal dimensions change with the energy of particles in the Hénon-Heiles system. Moreover, we find that the fractal dimensions are strongly linear with the escape rate.#br#To testify the universality of the conclusion, we calculate the escape rate and fractal dimensions of particles in the hexagon-shaped Hénon-Heiles system. Unlike the motion of particles in the Hénon-Heiles system, the escape of particles is divided into two ranges of energy. In low energy range, the escape rate and fractal dimensions of particles change with energy, which is similar to that in the Hénon-Heiles system. However, the escape rate and fractal dimensions tend to become stable in high energy range. But the general law is still valid–the fractal dimensions are strongly linear with the escape rate.#br#Therefore, the fractal dimensions can be served as a tool to study the escape features of particles in a chaotic system. We can characterize the transport behaviors in a chaotic electronic equipment by investigating the fractal dimensions in the design of mesoscopic devices.
-
Keywords:
- chaos /
- fractal dimensions /
- escape rates
[1] Hofferbert R, Alt H, Dembowski C 2005 Phys Rev. E 71 46201
[2] Stern E A, Sayers D E, Lytle F 1975 Phys. Rev. E 11 4836
[3] Xi D X, Xi Q 2007 Nonlinear physics (Nanjing: Nanjing University Press) pp83-106 (in Chinese) [席德勋, 席沁. 2007 非线性物理学(南京:南京大学出版社), 第 83–106 页]
[4] Bauer W, Bertsch G F 1990 Phys. Rev. Lett. 65 2213
[5] Legrand O, Sornette D 1991 Phys. Rev. Lett. 66 2172
[6] Zhao H J, Du M L 2007 Phys. Rev.E 76 027201
[7] Song X F, Du M L, Zhao H J 2012 Sci. Sin. Phys. Mech. Astron. 42 127 (in Chinese) [宋新芳, 杜孟利, 赵海军 2012 中国科学: 42 127]
[8] Custódio M S, Beims M W 2011 Phys. Rev.E 83 056201
[9] Shen Z P, Zhang Y H, Cai X J, Zhao G P, Zhang Q J 2014 Acta. Phys. Sin. 63 170509 (in Chinese) [沈志朋, 张延惠, 蔡祥吉, 赵国鹏, 张秋菊 2014 物理学报 63 170509]
[10] Cai X J, Zhang Y H, Li Z L, Jiang G H, Yang Q N, Xu X Y 2013 Chin. Phys.B 22 020501
[11] Hénon M, Heiles C 1964 Astrophys. J. 69 73
[12] Chin S A, Chen C R 2005 Celestial Mechanics and Dynamical Astronomy 91 301
[13] Suhan R, Reichl L E 2002 Physical Review E 65 055205
[14] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252
-
[1] Hofferbert R, Alt H, Dembowski C 2005 Phys Rev. E 71 46201
[2] Stern E A, Sayers D E, Lytle F 1975 Phys. Rev. E 11 4836
[3] Xi D X, Xi Q 2007 Nonlinear physics (Nanjing: Nanjing University Press) pp83-106 (in Chinese) [席德勋, 席沁. 2007 非线性物理学(南京:南京大学出版社), 第 83–106 页]
[4] Bauer W, Bertsch G F 1990 Phys. Rev. Lett. 65 2213
[5] Legrand O, Sornette D 1991 Phys. Rev. Lett. 66 2172
[6] Zhao H J, Du M L 2007 Phys. Rev.E 76 027201
[7] Song X F, Du M L, Zhao H J 2012 Sci. Sin. Phys. Mech. Astron. 42 127 (in Chinese) [宋新芳, 杜孟利, 赵海军 2012 中国科学: 42 127]
[8] Custódio M S, Beims M W 2011 Phys. Rev.E 83 056201
[9] Shen Z P, Zhang Y H, Cai X J, Zhao G P, Zhang Q J 2014 Acta. Phys. Sin. 63 170509 (in Chinese) [沈志朋, 张延惠, 蔡祥吉, 赵国鹏, 张秋菊 2014 物理学报 63 170509]
[10] Cai X J, Zhang Y H, Li Z L, Jiang G H, Yang Q N, Xu X Y 2013 Chin. Phys.B 22 020501
[11] Hénon M, Heiles C 1964 Astrophys. J. 69 73
[12] Chin S A, Chen C R 2005 Celestial Mechanics and Dynamical Astronomy 91 301
[13] Suhan R, Reichl L E 2002 Physical Review E 65 055205
[14] Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252
计量
- 文章访问数: 6010
- PDF下载量: 171
- 被引次数: 0