搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维Hénon-Heiles势及其变形势体系逃逸率与分形维数的研究

张延惠 沈志朋 蔡祥吉 徐秀兰 高嵩

引用本文:
Citation:

二维Hénon-Heiles势及其变形势体系逃逸率与分形维数的研究

张延惠, 沈志朋, 蔡祥吉, 徐秀兰, 高嵩

Fractal dimensions and escape rates in the two-dimensional Hénon-Heiles potential and its deformation form

Zhang Yan-Hui, Shen Zhi-Peng, Cai Xiang-Ji, Xu Xiu-Lan, Gao Song
PDF
导出引用
  • 采用Chin和Chen的动力学算法追踪粒子在体系中的运动情况, 首次研究并对比了粒子在Hénon-Heiles体系与变形Hénon-Heiles六边形体系中的混沌逃逸规律, 在Hénon-Heiles体系中, 对于不同能量范围, 分形维数与逃逸率随能量而改变, 但在变形Hénon-Heiles六边形体系中, 仅在低能区分形维数与逃逸率随能量的改变而变化, 而高能区逃逸率和分形维数趋于稳定值. 并且得到普遍规律, 即不同混沌体系中粒子的混沌逃逸率和粒子逃逸的分形维数呈现较强的线性相关性. 因而分形维数可以作为工具研究混沌体系中粒子的逃逸规律, 在介观器件设计中可以通过研究混沌电子器件的分形维数来表征粒子在器件中的传输行为.
    From the beginning of the twentieth century the development of nonlinear theory has guided us into a new field of exploration; chaos and fractals are important tools widely used in studying the nonlinear system. Fractal focuses on the description of the physical geometry while Chaos emphasizes the research on the developing process of dynamics coupled with geometry. We have studied the nonlinear behavior of the particles in non-integrable system by means of chaos and fractals.#br#There are fractal structures in a Hénon-Heiles system, by which we can investigate the general escape law of particles in chaotic systems. The motion of particles is traced by dynamical algorithm within the framework of Chin and Chen (2005 Celestial Mechanics and Dynamics Astronomy 91 301). For the first time, we study the escape property of particles in Hénon-Heiles system and make a comparison with it in its hexagon-shaped form. Particles with energy higher than the threshold (1/6) can escape from the Hénon-Heiles system. The self-similar structures are found by calculating the escape time of particles with an energy higher than the threshold for different exit angles. We calculate the escape rate of particles with different energies and make a statistical analysis on the fractal dimensions by ‘box-counting' method. It is that the escape rate and fractal dimensions change with the energy of particles in the Hénon-Heiles system. Moreover, we find that the fractal dimensions are strongly linear with the escape rate.#br#To testify the universality of the conclusion, we calculate the escape rate and fractal dimensions of particles in the hexagon-shaped Hénon-Heiles system. Unlike the motion of particles in the Hénon-Heiles system, the escape of particles is divided into two ranges of energy. In low energy range, the escape rate and fractal dimensions of particles change with energy, which is similar to that in the Hénon-Heiles system. However, the escape rate and fractal dimensions tend to become stable in high energy range. But the general law is still valid–the fractal dimensions are strongly linear with the escape rate.#br#Therefore, the fractal dimensions can be served as a tool to study the escape features of particles in a chaotic system. We can characterize the transport behaviors in a chaotic electronic equipment by investigating the fractal dimensions in the design of mesoscopic devices.
      通信作者: 张延惠, yhzhang@sdnu.edu.cn
    • 基金项目: 山东省自然科学基金(批准号: ZR2014AM030)资助的课题.
      Corresponding author: Zhang Yan-Hui, yhzhang@sdnu.edu.cn
    • Funds: Project supported by the Shandong Province Natural Science Foundation, China (Grant No. ZR2014AM030).
    [1]

    Hofferbert R, Alt H, Dembowski C 2005 Phys Rev. E 71 46201

    [2]

    Stern E A, Sayers D E, Lytle F 1975 Phys. Rev. E 11 4836

    [3]

    Xi D X, Xi Q 2007 Nonlinear physics (Nanjing: Nanjing University Press) pp83-106 (in Chinese) [席德勋, 席沁. 2007 非线性物理学(南京:南京大学出版社), 第 83–106 页]

    [4]

    Bauer W, Bertsch G F 1990 Phys. Rev. Lett. 65 2213

    [5]

    Legrand O, Sornette D 1991 Phys. Rev. Lett. 66 2172

    [6]

    Zhao H J, Du M L 2007 Phys. Rev.E 76 027201

    [7]

    Song X F, Du M L, Zhao H J 2012 Sci. Sin. Phys. Mech. Astron. 42 127 (in Chinese) [宋新芳, 杜孟利, 赵海军 2012 中国科学: 42 127]

    [8]

    Custódio M S, Beims M W 2011 Phys. Rev.E 83 056201

    [9]

    Shen Z P, Zhang Y H, Cai X J, Zhao G P, Zhang Q J 2014 Acta. Phys. Sin. 63 170509 (in Chinese) [沈志朋, 张延惠, 蔡祥吉, 赵国鹏, 张秋菊 2014 物理学报 63 170509]

    [10]

    Cai X J, Zhang Y H, Li Z L, Jiang G H, Yang Q N, Xu X Y 2013 Chin. Phys.B 22 020501

    [11]

    Hénon M, Heiles C 1964 Astrophys. J. 69 73

    [12]

    Chin S A, Chen C R 2005 Celestial Mechanics and Dynamical Astronomy 91 301

    [13]

    Suhan R, Reichl L E 2002 Physical Review E 65 055205

    [14]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

  • [1]

    Hofferbert R, Alt H, Dembowski C 2005 Phys Rev. E 71 46201

    [2]

    Stern E A, Sayers D E, Lytle F 1975 Phys. Rev. E 11 4836

    [3]

    Xi D X, Xi Q 2007 Nonlinear physics (Nanjing: Nanjing University Press) pp83-106 (in Chinese) [席德勋, 席沁. 2007 非线性物理学(南京:南京大学出版社), 第 83–106 页]

    [4]

    Bauer W, Bertsch G F 1990 Phys. Rev. Lett. 65 2213

    [5]

    Legrand O, Sornette D 1991 Phys. Rev. Lett. 66 2172

    [6]

    Zhao H J, Du M L 2007 Phys. Rev.E 76 027201

    [7]

    Song X F, Du M L, Zhao H J 2012 Sci. Sin. Phys. Mech. Astron. 42 127 (in Chinese) [宋新芳, 杜孟利, 赵海军 2012 中国科学: 42 127]

    [8]

    Custódio M S, Beims M W 2011 Phys. Rev.E 83 056201

    [9]

    Shen Z P, Zhang Y H, Cai X J, Zhao G P, Zhang Q J 2014 Acta. Phys. Sin. 63 170509 (in Chinese) [沈志朋, 张延惠, 蔡祥吉, 赵国鹏, 张秋菊 2014 物理学报 63 170509]

    [10]

    Cai X J, Zhang Y H, Li Z L, Jiang G H, Yang Q N, Xu X Y 2013 Chin. Phys.B 22 020501

    [11]

    Hénon M, Heiles C 1964 Astrophys. J. 69 73

    [12]

    Chin S A, Chen C R 2005 Celestial Mechanics and Dynamical Astronomy 91 301

    [13]

    Suhan R, Reichl L E 2002 Physical Review E 65 055205

    [14]

    Reed M A, Zhou C, Muller C J, Burgin T P, Tour J M 1997 Science 278 252

  • [1] 邵茁凯, 孙志, 刘坤, 王宸, 周盈旭, 孙伟峰. 基于分形理论的亚毫米间隙正负极性流注放电特性. 物理学报, 2023, 72(19): 194702. doi: 10.7498/aps.72.20230937
    [2] 韩韬, 刘香莲, 李璞, 郭晓敏, 郭龑强, 王云才. 线宽增强因子对光反馈半导体激光器混沌信号生成随机数性能的影响. 物理学报, 2017, 66(12): 124203. doi: 10.7498/aps.66.124203
    [3] 郑殿春, 丁宁, 沈湘东, 赵大伟, 郑秋平, 魏红庆. 基于分形理论的尖-板电极短空气隙放电现象研究. 物理学报, 2016, 65(2): 024703. doi: 10.7498/aps.65.024703
    [4] 陈书赢, 王海斗, 马国政, 康嘉杰, 徐滨士. 等离子喷涂层原生性孔隙几何结构的分形及统计特性. 物理学报, 2015, 64(24): 240504. doi: 10.7498/aps.64.240504
    [5] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路. 物理学报, 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [6] 沈志朋, 张延惠, 蔡祥吉, 赵国鹏, 张秋菊. Stadium型介观器件腔中粒子逃逸率的研究. 物理学报, 2014, 63(17): 170509. doi: 10.7498/aps.63.170509
    [7] 罗明伟, 罗小华, 李华青. 一类四维多翼混沌系统及其电路实现. 物理学报, 2013, 62(2): 020512. doi: 10.7498/aps.62.020512
    [8] 火元莲, 张广庶, 吕世华, 袁萍. 闪电的分形特征研究及其在自动识别中的应用. 物理学报, 2013, 62(5): 059201. doi: 10.7498/aps.62.059201
    [9] 杨秦男, 张延惠, 蔡祥吉, 蒋国辉, 徐学友. RIKEN介观器件腔中粒子输运过程的混沌性质及分形自相似结构研究. 物理学报, 2013, 62(8): 080505. doi: 10.7498/aps.62.080505
    [10] 唐洁, 张雄. 基于混沌理论的太阳黑子数平滑月均值预报. 物理学报, 2012, 61(16): 169601. doi: 10.7498/aps.61.169601
    [11] 罗哲贤, 余晖, 平凡, 马革兰. 涡旋轴对称化的分形维数表征. 物理学报, 2012, 61(24): 244702. doi: 10.7498/aps.61.244702
    [12] 李鹤, 杨周, 张义民, 闻邦椿. 基于径向基神经网络预测的混沌时间序列嵌入维数估计方法. 物理学报, 2011, 60(7): 070512. doi: 10.7498/aps.60.070512
    [13] 刘金海, 张化光, 冯 健. 输油管道压力时间序列混沌特性研究. 物理学报, 2008, 57(11): 6868-6877. doi: 10.7498/aps.57.6868
    [14] 赵海军, 杜孟利. 算法对混沌体系逃逸率的影响. 物理学报, 2007, 56(7): 3827-3832. doi: 10.7498/aps.56.3827
    [15] 王光义, 丘水生, 许志益. 一个新的三维二次混沌系统及其电路实现. 物理学报, 2006, 55(7): 3295-3301. doi: 10.7498/aps.55.3295
    [16] 盛利元, 曹莉凌, 孙克辉, 闻 姜. 基于TD-ERCS混沌系统的伪随机数发生器及其统计特性分析. 物理学报, 2005, 54(9): 4031-4037. doi: 10.7498/aps.54.4031
    [17] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数. 物理学报, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [18] 汪 渊, 徐可为. Cu-W薄膜表面形貌的分形表征与电阻率. 物理学报, 2004, 53(3): 900-904. doi: 10.7498/aps.53.900
    [19] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数. 物理学报, 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
    [20] 孙霞, 吴自勤. 规则表面形貌的分形和多重分形描述. 物理学报, 2001, 50(11): 2126-2131. doi: 10.7498/aps.50.2126
计量
  • 文章访问数:  6010
  • PDF下载量:  171
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-11
  • 修回日期:  2015-08-07
  • 刊出日期:  2015-12-05

/

返回文章
返回