-
采用经典分子动力学方法研究了压力驱动作用下水在石墨烯碳纳米管复合结构中的渗透特性.研究结果表明,水分子渗透通过石墨烯碳纳米管复合结构的渗透率明显高于石墨烯碳纳米管组合结构.水在石墨烯碳纳米管复合结构中的渗透率随着压强的升高而增大,随着电场强度的增大而减小.考虑了温度和复合结构中双碳管轴心距对水渗透性的影响规律.系统温度越高,水的渗透率越高;随着双碳管轴心距的增加,水的渗透率逐渐降低.通过计算分析水流沿渗透方向的能障分布,解释了各参数变化对水在石墨烯碳管复合结构中渗透特性的影响机理.研究结果将为基于石墨烯碳管复合结构的新型纳米水泵设计提供一定的理论依据.
-
关键词:
- 石墨烯碳纳米管复合结构 /
- 水 /
- 渗透率 /
- 分子动力学
In this paper, the classical molecular dynamics method is used to investigate the permeability of pressure-driven water fluid in the hybrid structure of graphene-carbon nanotube (CNT). The results indicate that the permeability of water molecules for the hybrid structure of graphene-CNT is obviously higher than that for the assembled structure of graphene-CNT. The combination between the graphene sheet and CNT in the hybrid structure is found to be a key point to improve the permeability of water molecules. Subsequently, the potential of mean force (PMF) is calculated in order to explain the influences of the combined structure on the permeabilities for the water fluid passing through both the hybrid and assembled graphene-CNT structures. The result shows that the PMF for the water molecules penetrating through the assembled structure is larger than that for the hybrid structure appreciably. It implies that the structure of the combined chemical bonds in the hybrid structure can efficiently improve the permeability of water molecules. As for the water penetrating through the hybrid structured graphene-CNT, the permeability of water increases with water pressure rising, and decreases with the electric field intensity increasing. The water molecules cannot pass through the proposed hybrid structure below a pressure threshold of 100 MPa. The permeability of water in the hybrid structure decreases with the increasing charge quantity on CNT below a threshold of 0.8e. The PMF for water penetrating through the hybrid structure decreases with charge quantity decreasing. The results suggest that the water permeability can be controlled by regulating the water pressure and the electric field intensity. Furthermore, the influences of the temperature and the axis spacing of two CNTs in the hybrid structure on the water permeability are considered. The permeability of water in the hybrid structure increases with the increasing temperature above a threshold of 200 K. The PMF for water penetrating through the hybrid structure increases with the decreasing temperature. Interestingly, the water permeability decreases with the increasing axis spacing. As the axial spacing increases, the water permeability decreases gradually and even approaches to two times of the permeability in the case of the hybrid structure with a single CNT channel. The findings can provide a theoretical basis for designing nanopumps or osmotic membranes based on the graphene-CNT hybrid structures.[1] Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755
[2] de Groot B L, Grubmuller H 2001 Science 294 2353
[3] Lijima S 1991 Nature 345 56
[4] Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59
[5] Hong Y C, Shin D H, Uhm H S 2007 Surf. Coat. Technol. 201 5025
[6] Xia K L, Jian M Q, Zhang Y Y 2016 Acta Phys. Chim. Sin. 32 2427 (in Chinese) [夏凯伦, 蹇木强, 张莹莹 2016 物理化学学报 32 2427]
[7] Pagona G, Tagmatarchis N 2006 Curr. Med. Chem. 13 1789
[8] Sun L G, He X Q, Lu J 2016 NPJ Comput. Mater. 2 16004
[9] Wang X, Sparkman J, Gou J H 2017 Compos. Commun. 3 1
[10] Rinne K F, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780
[11] Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平,罗成林,陈贵虎,韩典荣,朱兴凤,戴亚飞 2015 物理学报 64 116101]
[12] Longhurst M J, Quirke N 2007 Nano Lett. 7 3324
[13] Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N, Ling Z Y 2014 J. Appl. Phys. 116 074307
[14] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188
[15] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[16] Zuo G C, Shen R, Ma S J, Guo W L 2009 ACS Nano 4 205
[17] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nat. Nanotechnol. 2 709
[18] Cao G X, Qiao Y, Zhou Q L, Chen X 2008 Philos. Mag. Lett. 88 371
[19] Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284
[20] Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717
[21] Zhu Y, Li L, Zhang C G, Casillas G, Sun Z Z, Yan Z, Ruan G D, Peng Z W, Raji A R O, Kittrell C, Hauge R H, Tour J M 2012 Nat. Commun. 3 1225
[22] Kim Y S, Kumar K, Fisher F T, Yang E H 2011 Nanotechnology 23 015301
[23] Plimpton S J 1995 Comput. Phys. 117 1
[24] Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304
[25] Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665
[26] Wang Y H, He Z J, Cupta K M, Shi Q, Lui R F 2017 Carbon 116 120
[27] Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154
-
[1] Yang Y L, Li X Y, Jiang J L, Du H L, Zhao L N, Zhao Y L 2010 ACS Nano 4 5755
[2] de Groot B L, Grubmuller H 2001 Science 294 2353
[3] Lijima S 1991 Nature 345 56
[4] Wildoer J W G, Venema L C, Rinzler A G, Smalley R E, Dekker C 1998 Nature 391 59
[5] Hong Y C, Shin D H, Uhm H S 2007 Surf. Coat. Technol. 201 5025
[6] Xia K L, Jian M Q, Zhang Y Y 2016 Acta Phys. Chim. Sin. 32 2427 (in Chinese) [夏凯伦, 蹇木强, 张莹莹 2016 物理化学学报 32 2427]
[7] Pagona G, Tagmatarchis N 2006 Curr. Med. Chem. 13 1789
[8] Sun L G, He X Q, Lu J 2016 NPJ Comput. Mater. 2 16004
[9] Wang X, Sparkman J, Gou J H 2017 Compos. Commun. 3 1
[10] Rinne K F, Gekle S, Bonthuis D J, Netz R R 2012 Nano Lett. 12 1780
[11] Cao P, Luo C L, Chen G H, Han D R, Zhu X F, Dai Y F 2015 Acta Phys. Sin. 64 116101 (in Chinese) [曹平,罗成林,陈贵虎,韩典荣,朱兴凤,戴亚飞 2015 物理学报 64 116101]
[12] Longhurst M J, Quirke N 2007 Nano Lett. 7 3324
[13] Zhang Z Q, Dong X, Ye H F, Cheng G G, Ding J N, Ling Z Y 2014 J. Appl. Phys. 116 074307
[14] Hummer G, Rasaiah J C, Noworyta J P 2001 Nature 414 188
[15] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H 2007 Proc. Natl. Acad. Sci. USA 104 3687
[16] Zuo G C, Shen R, Ma S J, Guo W L 2009 ACS Nano 4 205
[17] Gong X J, Li J Y, Lu H J, Wan R Z, Li J C, Hu J, Fang H P 2007 Nat. Nanotechnol. 2 709
[18] Cao G X, Qiao Y, Zhou Q L, Chen X 2008 Philos. Mag. Lett. 88 371
[19] Qiu H, Shen R, Guo W L 2011 Nano Res. 4 284
[20] Wang L Y, Wu H A, Wang F C 2017 Sci. Rep. 7 41717
[21] Zhu Y, Li L, Zhang C G, Casillas G, Sun Z Z, Yan Z, Ruan G D, Peng Z W, Raji A R O, Kittrell C, Hauge R H, Tour J M 2012 Nat. Commun. 3 1225
[22] Kim Y S, Kumar K, Fisher F T, Yang E H 2011 Nanotechnology 23 015301
[23] Plimpton S J 1995 Comput. Phys. 117 1
[24] Zhang Z Q, Ye H F, Liu Z, Ding J N, Cheng G G, Ling Z Y, Zheng Y G, Wang L, Wang J B 2012 J. Appl. Phys. 111 114304
[25] Horn H W, Swope W C, Pitera J W, Madura J D, Dick T J, Hura G L, Head-Gordon T 2004 J. Chem. Phys. 120 9665
[26] Wang Y H, He Z J, Cupta K M, Shi Q, Lui R F 2017 Carbon 116 120
[27] Zhu F Q, Tajkhorshid E, Schulten K 2002 Biophys. J. 83 154
计量
- 文章访问数: 7139
- PDF下载量: 305
- 被引次数: 0