搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究单个水分子在PuO2(111)和(110)表面吸附行为

马腾飞 朱松林 宋佳璐 虞游 田晓峰

引用本文:
Citation:

第一性原理研究单个水分子在PuO2(111)和(110)表面吸附行为

马腾飞, 朱松林, 宋佳璐, 虞游, 田晓峰

First-principles study of adsorption behavior of single water molecule on (111) and (110) surfaces of PuO2

MA Tengfei, ZHU SongLin, SONG Jialu, YU You, TIAN Xiaofeng
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 二氧化钚(PuO2)作为一种重要的核燃料材料, 表面特性直接影响放射性元素的稳定性和迁移行为, 在能源储存领域收到广泛关注. 本文通过第一性原理方法研究水分子在二氧化钚(111)和(110)表面的吸附行为以及氧空位过量电子对这些表面的影响. 模拟表明, PuO2(111)表面比(110)表面表现出更高的稳定性, 具有更高的氧空位形成能. 在化学计量的PuO2(111)和(110)表面上, 水分子的解离吸附构型是最稳定的. 利用轻推弹性带方法, 研究发现在PuO2(111)和(110)表面上, 第1个氢原子的解离仅需0.11 eV和0.008 eV的能垒, 而第2步的完全解离则需要更高的能垒, 分别为0.85 eV和1.02 eV. 在还原的PuO2(110)表面存在氧空位的情况下, 可以促进水分子解离成位于氧空位上方的羟基和与表面氧原子结合的氢原子; 在一定条件下, 克服3.31 eV的能垒, 2个氢原子即可形成H2, 在PuO2(111)过氢表面产生H2能垒下降到1.92 eV. 本文研究对于改进核燃料储存技术、延长储存寿命和降低潜在风险具有重要的实际意义.
    Plutonium dioxide, as one of the primary materials for nuclear fuel, serves as a critical component in fast neutron reactor fuel and mixed oxide (MOX) fuel due to its distinctive physical and chemical properties. It can significantly enhance the utilization efficiency of uranium and diminish the demand for natural uranium resources. Moreover, plutonium dioxide constitutes an essential component of spent nuclear fuel. However, during long-term storage, oxygen vacancies on its surface can facilitate hydrogen release under the influence of water molecules, thereby posing potential risks to nuclear safety. Therefore, it is crucial to have a deep understanding of the interaction mechanism between water molecules and the plutonium dioxide surface. Such insights provide valuable theoretical guidance for ensuring the safe storage of spent nuclear fuel., The adsorption behavior of H2O molecules on the PuO2 (111) and (110) surfaces, as well as the effects of oxygen vacancies and excess electrons on these surfaces, is investigated numerically based on the first-principles calculations in this work. The simulation results show that the PuO2 (111) surface is very stable compared with the PuO2 (110) surface, indicating that PuO2 (110) is more prone to oxygen vacancies. For the adsorption of water molecules on PuO2 (111) and (110) surfaces, the plutonium atom vertex site is identified as the only stable adsorption site, with one hydrogen atom of the water molecule preferentially bonding to a surface oxygen atom. Due to the higher reactivity of the PuO2 (110) surface than that of the stoichiometric PuO2 (111) surface, water molecules exhibit molecular adsorption configurations on the latter, while dissociative adsorption configurations are favored on the former. Using the CI-NEB method, the energy barriers for the dissociation of the first hydrogen atom on stoichiometric surfaces of PuO2 (111) and (110) are determined to be 0.11 eV and 0.008 eV, respectively. In contrast, the energy barriers for complete dissociation are 0.85 eV and 1.02 eV, respectively, which are significantly higher. For reduced PuO2 (111) surfaces containing surface oxygen vacancies, the energy barrier for H2 production via water decomposition is calculated to be 3.31 eV. On the over-hydrogenated PuO2 (111) surface, the energy barrier for H2 production decreases markedly to 1.92 eV, providing theoretical insights into the mechanism of hydrogen release during nuclear fuel storage.
  • 图 1  二氧化钚(PuO2)晶体(111)和(110)表面(钚原子和氧原子分别用青色和黄色表示, 白色方框表示氧空位) (a)化学计量表面; (b)第1层氧空位的还原表面; (c)第2层氧空位的还原表面

    Fig. 1.  Stoichiometric models and reduction of PuO2 crystals on the (111) and (110) surfaces: (a) The stoichiometric surface; (b) the reduced surface with first-layer oxygen vacancies; (c) the reduced surface with second-layer oxygen vacancies. Plutonium atoms and oxygen atoms are represented in cyan and yellow, respectively. The white boxes indicate oxygen vacancies.

    图 2  化学计量(111)表面(a)和(110)表面(b)、第1层氧空位还原(110)表面(c)和(111)表面(d)的PDOS, 其中费米能量设为零

    Fig. 2.  Projected density of states (PDOS) of stoichiometric (111) surface (a) and (110) surface (b), first-layer oxygen vacancy reduced (110) surface (c) and (111) surface (d). The Fermi energy is set to zero.

    图 3  PuO2晶体的化学计量模型(a) (111)和(b) (110)表面俯视图以及水分子吸附点位(颜色编码与图1相同)

    Fig. 3.  Top views of the (a) (111) surface and (b) (110) surface on the stoichiometric model of the PuO2 crystal and corresponding adsorption sites of water molecules. The color codes are as shown in Fig.1.

    图 4  水分子在化学计量(a), (c)和还原(b), (d)PuO2(111)表面和(110)表面吸附的最稳定结构, 其中白色方框表示氧空位, 距离单位为Å, 颜色编码与图1相同

    Fig. 4.  The most stable structures of water molecule adsorption on stoichiometric (a), (c) and reduced (b), (d) PuO2 (111) and (110) surfaces. The white box indicates oxygen vacancy. Distances are in Å. The color coding is the same as in Fig. 1.

    图 5  水分子在PuO2 (a), (b), (e), (f) 化学计量和(c), (d)还原(111)和(110)表面部分解离吸附和完全解离吸附的最稳定结构, 其中白色方框表示氧空位, 黑色方框表示水解离产生的羟基自由基, 颜色编码与图1相同

    Fig. 5.  The most stable structures of partially dissociative and fully dissociative adsorption of water molecules on PuO2 (a), (b), (e), (f) stoichiometric and (c), (d) reduced (111) and (110) surfaces. The white box indicates oxygen vacancy, and the black box indicates the hydroxyl radical from water dissociation. The color coding is the same as in Fig. 1.

    图 6  计算得到的水分子在化学计量(a), (b) (111)和(c), (d) (110)表面的水解离能量剖面 (a), (c) 第1次脱氢; (b), (d)第2次脱氢; 插图分别对应初始态(左)、过渡态(中)和最终态(右)的优化结构, 距离单位为Å, 颜色编码如图1所示

    Fig. 6.  Dissociation energy profiles of a single water molecule on stoichiometric (a), (b) (111) and (c), (d) (110) surfaces: (a), (c) The first dehydrogenation on the surface; (b), (d) the second dehydrogenation. The insets correspond to the optimized structures of the initial state (left), transition state (middle), and final state (right). Distances are measured in ÅColor codes are as shown in Fig. 1

    图 7  计算得到的在还原的PuO2(111)表面上水分子解离路径和两种H2形成的能量, 其中白色方框表示氧空位, TS是相对于前一状态的过渡态能量, 距离单位为Å, 能量单位为eV, 颜色编码与图1相同

    Fig. 7.  Calculated dissociation pathways of water molecules and the energies of two types of H2 formation on the reduced PuO2(111) surface. The white box indicates an oxygen vacancy, and TS represents the transition state energy relative to the previous state Distances are in Å, and energies are in eV. The color coding is shown in Fig. 1.

    表 1  PuO2表面能(单位为J/m²)

    Table 1.  PuO2 surface energies in units of J/m2.

    Refs.Methodsγ(111)γ(110)
    Sun et al.[32]DFTLDA/GGA+U
    (U = 4 eV)
    0.72—1.041.20—1.44
    Rák et al.[11]GGA+U
    (U = 4 eV)
    0.741.15
    This workGGA+U
    (U = 4 eV)
    0.721.27
    下载: 导出CSV

    表 2  PuO2(111)和(110)表面第1层-Top和第2层-Sub氧空位的形成能(以eV为单位)

    Table 2.  Formation energies of top-surface and subsurface oxygen vacancy in PnO2 (111) and (110) surfaces (in units of eV).

    Refs. Methods Surface Top Sub
    Wang et al.[13] DFT+U γ(111) 2.81 2.43
    γ(110)
    This work γ(111) 2.66 2.58
    γ(110) 1.17 1.39
    下载: 导出CSV
  • [1]

    Haschke J M, Allen T H, Morales L A 2001 J. Alloys Compd. 314 78Google Scholar

    [2]

    Haschke J M, Allen T H, Stakebake J L 1996 J. Alloys Compd. 243 23Google Scholar

    [3]

    Korzhavyi P A, Vitos L, Andersson D A, Johansson B 2004 Nat. Mater. 3 225Google Scholar

    [4]

    Flores H G G, Roussel P, Moore D P, Pugmire D L 2011 Surf. Sci. 605 314Google Scholar

    [5]

    Ao B Y, Lu H Y, Qiu R Z, Ye X Q, Shi P, Chen P H, Wang X L 2015 J. Phys. Chem. C 119 14879Google Scholar

    [6]

    Hernandez S C, Holby E F 2016 J. Phys. Chem. C 120 13095Google Scholar

    [7]

    Wang L F, Sun B, Liu H F, Lin D Y, Song H F 2019 J. Nucl. Mater. 526 151762Google Scholar

    [8]

    Huang H, Zhu M, Wu F, Li L X, Li Y 2024 RSC Adv. 14 10995Google Scholar

    [9]

    Wu X, Ray A K 2002 Phys. Rev. B 65 085403Google Scholar

    [10]

    Boettger J C, Ray A K 2002 Int. J. Quantum Chem. 90 1470Google Scholar

    [11]

    Rák Zs, Ewing R C, Becker U 2013 Surf. Sci. 608 180Google Scholar

    [12]

    Jomard G, Bottin F 2011 Phys. Rev. B 84 195469Google Scholar

    [13]

    Wang G X, Batista E R, Yang P 2019 J. Phys. Chem. C 123 30245Google Scholar

    [14]

    Wellington J P W, Tegner B E, Collard J, Kerridge A, Kaltsoyannis N 2018 J. Phys. Chem. C 122 7149Google Scholar

    [15]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [16]

    Kresse G, Hafner J 1994 Phys. Rev. B 49 14251Google Scholar

    [17]

    Kresse G, Hafner J 1993 Phys. Rev. B 48 13115Google Scholar

    [18]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [19]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [20]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [21]

    Bo T, Lan J H, Wang C Z, Zhao Y L, He C H, Zhang Y J, Chai Z F, Shi W Q 2014 J. Phys. Chem. C 118 21935Google Scholar

    [22]

    Zhang L, Sun B, Zhang Q L, Liu H F, Liu K Z, Song H F 2020 Appl. Surf. Sci. 516 146164Google Scholar

    [23]

    Zhang C, Yang Y, Zhang P 2018 J. Phys. Chem. C 122 371Google Scholar

    [24]

    Tegner B E, Molinari M, Kerridge A, Parker S C, Kaltsoyannis N 2017 J. Phys. Chem. C 121 1675

    [25]

    Siebenhofer M, Nenning A, Rameshan C, Blaha P, Fleig J, Kubicek M 2024 Nat. Commun. 15 1730Google Scholar

    [26]

    Hou Y F, Jiang W, Li S J, Fu Z G, Zhang P 2023 Chin. Phys. B 32 027103Google Scholar

    [27]

    Gryaznov D, Heifets E, Sedmidubsky D 2010 Phys. Chem. Chem. Phys. 12 12273Google Scholar

    [28]

    Moten S A, Atta-Fynn R, Ray A K, Huda M N 2016 J. Nucl. Mater. 468 37Google Scholar

    [29]

    Jomard G, Amadon B, Bottin F, Torrent M 2008 Phys. Rev. B 78 075125Google Scholar

    [30]

    Qu J, Liu W, Liu R, He J, Liu D, Feng Z 2023 Chem. Catalysis 3 10

    [31]

    Wellington J P W, Kerridge A, Austin J, Kaltsoyannis N 2016 J. Nucl. Mater. 482 124Google Scholar

    [32]

    Sun B, Liu H F, Song H F, Zhang G C, Zheng H, Zhao X G, Zhang P 2012 J. Nucl. Mater. 426 139Google Scholar

  • [1] 万煜炜, 王瑞, 周文权, 王一平, 蔡亚楠, 王常. Ag, Cu掺杂氧化石墨烯吸附NH3的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20241737
    [2] 江以航, 曹俸华, 栗浩淼, 聂永杰, 李国倡, 魏艳慧, 鲁广昊, 李盛涛, 朱远惟. 等离子体处理构建梯度分布氧空位提升三氧化钨电致变色性能. 物理学报, doi: 10.7498/aps.74.20241663
    [3] 方语萱, 杨益, 夏志良, 霍宗亮. 3D NAND闪存中TiN与氧化表面F吸附作用的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20240254
    [4] 吴宇阳, 李卫, 任青颖, 李金泽, 许巍, 许杰. 金属Sc修饰Ti2CO2吸附气体分子的第一性原理研究. 物理学报, doi: 10.7498/aps.73.20231432
    [5] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20221973
    [6] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, doi: 10.7498/aps.67.20181028
    [7] 何金云, 彭代江, 王燕舞, 龙飞, 邹正光. 具有氧空位BixWO6(1.81≤ x≤ 2.01)的第一性原理计算和光催化性能研究. 物理学报, doi: 10.7498/aps.67.20172287
    [8] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, doi: 10.7498/aps.66.086801
    [9] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.66.216801
    [10] 栗苹, 许玉堂. 氧空位迁移造成的氧化物介质层时变击穿的蒙特卡罗模拟. 物理学报, doi: 10.7498/aps.66.217701
    [11] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, doi: 10.7498/aps.65.226801
    [12] 蒋先伟, 代广珍, 鲁世斌, 汪家余, 代月花, 陈军宁. Al掺杂对HfO2俘获层可靠性影响第一性原理研究. 物理学报, doi: 10.7498/aps.64.091301
    [13] 蒋先伟, 鲁世斌, 代广珍, 汪家余, 金波, 陈军宁. 电荷俘获存储器数据保持特性第一性原理研究. 物理学报, doi: 10.7498/aps.64.213102
    [14] 代广珍, 蒋先伟, 徐太龙, 刘琦, 陈军宁, 代月花. 密度泛函理论研究氧空位对HfO2晶格结构和电学特性影响. 物理学报, doi: 10.7498/aps.64.033101
    [15] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新. 碳、氧、硫掺杂二维黑磷的第一性原理计算. 物理学报, doi: 10.7498/aps.63.207301
    [16] 代广珍, 代月花, 徐太龙, 汪家余, 赵远洋, 陈军宁, 刘琦. HfO2中影响电荷俘获型存储器的氧空位特性第一性原理研究. 物理学报, doi: 10.7498/aps.63.123101
    [17] 马丽莎, 张前程, 程琳. Zn吸附到含有氧空位(VO)以及羟基(-OH)的锐钛矿相TiO2(101)表面电子结构的第一性原理计算. 物理学报, doi: 10.7498/aps.62.187101
    [18] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.61.047101
    [19] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.60.086801
    [20] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, doi: 10.7498/aps.58.3352
计量
  • 文章访问数:  281
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-17
  • 修回日期:  2025-04-30
  • 上网日期:  2025-06-05

/

返回文章
返回