搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三氧化钨表面氢吸附机理的第一性原理研究

姜平国 汪正兵 闫永播

引用本文:
Citation:

三氧化钨表面氢吸附机理的第一性原理研究

姜平国, 汪正兵, 闫永播

First-principles study on adsorption mechanism of hydrogen on tungsten trioxide surface

Jiang Ping-Guo, Wang Zheng-Bing, Yan Yong-Bo
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理平面波超软赝势方法,在广义梯度近似下,研究了立方WO3,WO3(001)表面结构及其氢吸附机理. 计算结果表明立方晶体WO3理论带隙宽度为0.587 eV. WO3(001)表面有WO终止(001)表面和O终止(001)表面两种结构,表面结构优化后W-O键长和W-O-W键角改变,从而实现表面弛豫;WO终止(001)表面和O终止(001) 表面分别呈现n型半导体特征和p型半导体特征. 分别计算了H原子吸附在WO终止(001)表面和O终止(001)表面的H-O2c-H,H-O2cH-O2c,H-O1c-H 和H-O1cH-O1c四种吸附构型,其中H-O1c-H 吸附构型的吸附能最小,H-O 键最短,H失去电子数最多,分别为-3.684 eV,0.0968 nm和0.55e,此吸附构型最稳定. 分析其吸附前后的态密度,带隙从吸附前的0.624 eV 增加到1.004 eV,价带宽度基本不变. H的1s轨道电子与O 的2p,2s轨道电子相互作用,在-8和-20 eV附近各形成了一个较强的孤立电子峰,两个H原子分别与一个O1c原子形成化学键,最终吸附反应生成了一个H2O分子,同时产生了一个表面氧空位.
    With the development of modern industrial technology, tungsten products prepared from normal tungsten powder cannot meet the demands of industry. The tungsten product produced from ultra-fine tungsten powder exhibits high strength, high toughness, and low metal plasticity-brittleness transition temperature, which greatly improves the performance of materials. Hence, it is necessary to carry out theoretical research on the micro adsorption dynamics during hydrogen reduction of tungsten trioxide to prepare ultra fine tungsten powder. In order to understand crystal characteristics of WO3 and WO3(001) surface characteristics, and to provide beneficial theoretical support for reaction law of hydrogen reduction on the WO3(001) surface, the mechanisms of H atom adsorption on cubic WO3 and WO3(001) surface are studied by the first-principles calculation based on the density functional theory (DFT) plane wave pseudo-potential method. The results show that theoretically calculated band gap of the cubic crystalline WO3 is 0.587 eV. There are two kinds of WO3(001) surfaces, WO-terminated (001) surface and O-terminated (001) surface. The W-O bond length and the bond angle of W-O-W structure change after the geometric optimization of the surface, and thus the surface relaxation is realized. The WO-terminated (001) surface shows n-type semiconductor characteristics while the O-terminated (001) surface shows p-type semiconductor characteristics. Four adsorption configurations of H atoms on the WO-terminated (001) surface and the O-terminated (001) surface, including H-O2c-H, H-O2 cH-O2c, H-O1c-H, and H-O1cH-O1c, are calculated. Among them, the adsorption energy of the H-O1c-H configuration is the smallest (-3.684 eV) with the shortest bond length of H-O bond (0.0968 nm), and hydrogen atoms lose the most of electrons (0.55e), which indicates that the H-O1c-H adsorption configuration is the most stable one. The band gap of the H-O1c-H configuration increases from 0.624 eV to 1.004 eV after adsorption, while the bandwidth of valence band is almost unchanged. The results about the density of states (DOS) reveal that 1s state of the H atom interacts with 2p and 2s states of the O atom. Strong isolated electron peaks are formed to be at about -8 and -20 eV. The outermost O1c atoms of O-terminated (001) surface contain an unsaturated bond, facilitating the bonding between two H atoms and one O1c atom. Thus, two H atoms and one O1c atom form chemical bonds respectively, and an H2O molecule is generated, leaving an oxygen vacancy on the surface after adsorption reaction. By combining experimental observations with simulation results, the mechanism of hydrogen reducing tungsten trioxide can be elaborated profoundly from a micro view.
      通信作者: 姜平国, pingguo_jiang@163.com
    • 基金项目: 国家自然科学基金(批准号:51564016)和江西省自然科学基金(批准号:20151BAB206029) 资助的课题.
      Corresponding author: Jiang Ping-Guo, pingguo_jiang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51564016) and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB206029).
    [1]

    Yang Y H, Xie R R, Li H, Liu C J, Liu W H, Zhan F Q 2016 Trans. Nonferrous Met. Soc. China 26 2390

    [2]

    Chen Z, Wang W, Zhu K G 2015 Acta Metall. Sin. 28 1

    [3]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 物理学报 52 1003]

    [4]

    Kukkola J, Mklin J, Halonen N, Kyllnen T, Tth G, Szab M, Shchukarev A, Mikkola J P, Jantunen H, Kords K 2011 Sensor. Actuat. B 153 293

    [5]

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201 (in Chinese) [方成, 汪洪, 施思齐 2016 物理学报 65 168201]

    [6]

    Zhang T, Zhu Z L, Chen H N, Bai Y, Xiao S, Zheng X L, Xue Q Z, Yang S H 2015 Nanoscale 7 2933

    [7]

    Liu X H, Zhou Y, Liang F Y, Qu H N, Wen H R 2015 Nonferrous Met. Sci. Eng. 6 53 (in Chinese) [刘喜慧, 周阳, 梁福永, 曲慧男, 温和瑞 2015 有色金属科学与工程 6 53]

    [8]

    Qin Y X, Liu C Y, Liu Y 2015 Chin. Phys. B 24 027304

    [9]

    Zhang F, Wang H Q, Wang S, Wang J Y, Zhong Z C, Jin Y 2014 Chin. Phys. B 23 098105

    [10]

    Vesel A, Mozetič M, Balat-Pichelin M 2015 Thin Solid Films 591 174

    [11]

    Guo F 2007 Mat. Sci. Eng. Powder Metall. 12 205 (in Chinese) [郭峰 2007 粉末冶金材料科学与工程 12 205]

    [12]

    Li H G, Yang J G, Li K 2010 Tungsten Metallurgy (Changsha: Central South University Press) pp36-39 (in Chinese) [李洪桂, 羊建高, 李昆 2010 钨冶金学 (长沙: 中南大学出版社) 第36-39页]

    [13]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 物理学报 61 040702]

    [14]

    Qiu K Q, Wang A M, Zhang H F, Qiao D C, Ding B Z, Hu Z Q 2002 Acta Metall. Sin. 38 1091 (in Chinese) [邱克强, 王爱民, 张海峰, 乔东春, 丁炳哲, 胡壮麒 2002 金属学报 38 1091]

    [15]

    Hua J S, Jing F Q, Dong Y B, Tan H, Shen Z Y, Zhou X M, Hu S L 2003 Acta Phys. Sin. 52 2005 (in Chinese) [华劲松, 经福谦, 董玉斌, 谭华, 沈中毅, 周显明, 胡绍楼 2003 物理学报 52 2005]

    [16]

    Tan J, Zhou Z J, Zhu X P, Guo S Q, Qu D D, Lei M K, Ge C C 2012 Trans. Nonferrous Met. Soc. China 22 1081

    [17]

    Liu H M, Fan J L, Tian J M, You F 2009 China Tungsten Ind. 24 29 (in Chinese) [刘辉明, 范景莲, 田家敏, 游峰 2009 中国钨业 24 29]

    [18]

    Hessel S, Shpigler B, Botstein O 1993 Rev. Chem. Eng. 9 345

    [19]

    Wu X W, Luo J S, Lu B Z, Xie C H, Pi Z M, Hu M Z, Xu T, Wu G G, Yu Z M, Yi D Q 2009 Trans. Nonferrous Met. Soc. China 19 785

    [20]

    Xu L, Yan Q Z, Xia M, Zhu L X 2013 Int. J. Refract. Met. Hard Mater. 36 238

    [21]

    Yu Y X 2013 Phys. Chem. Chem. Phys. 15 16819

    [22]

    Yu Y X 2016 J. Phys. Chem. C 120 5288

    [23]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]

    [24]

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese) [薛丽, 任一鸣 2016 物理学报 65 156301]

    [25]

    Yu Y X 2014 ACS Appl. Mater. Interfaces 6 16267

    [26]

    Li B, Wu T Q, Wang C C, Jiang Y 2016 Acta Phys. Sin. 65 216301 (in Chinese) [李白, 吴太权, 汪辰超, 江影 2016 物理学报 65 216301]

    [27]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187

    [28]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [29]

    Yakovkin I N, Gutowski M 2007 Surf. Sci. 601 1481

    [30]

    Tanner R E, Meethunkij P, Altman E I 2000 J. Phys. Chem. B 104 12315

    [31]

    Ma S, Frederick B G 2003 J. Phys. Chem. B 107 11960

    [32]

    Tian X G, Zhang Y, Yang T S 2012 J. Syn. Cryst. 41 323 (in Chinese) [田相桂, 张跃, 杨泰生 2012 人工晶体学报 41 323]

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [34]

    Wang Y, Perdew J P, Chevary J A, Macdonald L D, Vosko S H 1990 Phys. Rev. A 41 40

    [35]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [37]

    Fletcher R 1970 Comput. J. 13 317

    [38]

    Tian X G, Zhang Y, Yang T S 2012 Acta Phys. Chim. Sin. 28 1063

    [39]

    Yamaguchi O, Tomihisa D, Kawabata H, Shimizu K 1987 J. Am. Ceram. Soc. 70 94

    [40]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299

    [41]

    Sun X, Kurahashi M, Pratt A, Yamauchi Y 2011 Sur. Sci. 605 1067

  • [1]

    Yang Y H, Xie R R, Li H, Liu C J, Liu W H, Zhan F Q 2016 Trans. Nonferrous Met. Soc. China 26 2390

    [2]

    Chen Z, Wang W, Zhu K G 2015 Acta Metall. Sin. 28 1

    [3]

    Dai F P, L S Y, Feng B X, Jiang S R, Chen C 2003 Acta Phys. Sin. 52 1003 (in Chinese) [代富平, 吕淑媛, 冯博学, 蒋生蕊, 陈冲 2003 物理学报 52 1003]

    [4]

    Kukkola J, Mklin J, Halonen N, Kyllnen T, Tth G, Szab M, Shchukarev A, Mikkola J P, Jantunen H, Kords K 2011 Sensor. Actuat. B 153 293

    [5]

    Fang C, Wang H, Shi S Q 2016 Acta Phys. Sin. 65 168201 (in Chinese) [方成, 汪洪, 施思齐 2016 物理学报 65 168201]

    [6]

    Zhang T, Zhu Z L, Chen H N, Bai Y, Xiao S, Zheng X L, Xue Q Z, Yang S H 2015 Nanoscale 7 2933

    [7]

    Liu X H, Zhou Y, Liang F Y, Qu H N, Wen H R 2015 Nonferrous Met. Sci. Eng. 6 53 (in Chinese) [刘喜慧, 周阳, 梁福永, 曲慧男, 温和瑞 2015 有色金属科学与工程 6 53]

    [8]

    Qin Y X, Liu C Y, Liu Y 2015 Chin. Phys. B 24 027304

    [9]

    Zhang F, Wang H Q, Wang S, Wang J Y, Zhong Z C, Jin Y 2014 Chin. Phys. B 23 098105

    [10]

    Vesel A, Mozetič M, Balat-Pichelin M 2015 Thin Solid Films 591 174

    [11]

    Guo F 2007 Mat. Sci. Eng. Powder Metall. 12 205 (in Chinese) [郭峰 2007 粉末冶金材料科学与工程 12 205]

    [12]

    Li H G, Yang J G, Li K 2010 Tungsten Metallurgy (Changsha: Central South University Press) pp36-39 (in Chinese) [李洪桂, 羊建高, 李昆 2010 钨冶金学 (长沙: 中南大学出版社) 第36-39页]

    [13]

    Yu G, Han Q G, Li M Z, Jia X P, Ma H A, Li Y F 2012 Acta Phys. Sin. 61 040702 (in Chinese) [于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬 2012 物理学报 61 040702]

    [14]

    Qiu K Q, Wang A M, Zhang H F, Qiao D C, Ding B Z, Hu Z Q 2002 Acta Metall. Sin. 38 1091 (in Chinese) [邱克强, 王爱民, 张海峰, 乔东春, 丁炳哲, 胡壮麒 2002 金属学报 38 1091]

    [15]

    Hua J S, Jing F Q, Dong Y B, Tan H, Shen Z Y, Zhou X M, Hu S L 2003 Acta Phys. Sin. 52 2005 (in Chinese) [华劲松, 经福谦, 董玉斌, 谭华, 沈中毅, 周显明, 胡绍楼 2003 物理学报 52 2005]

    [16]

    Tan J, Zhou Z J, Zhu X P, Guo S Q, Qu D D, Lei M K, Ge C C 2012 Trans. Nonferrous Met. Soc. China 22 1081

    [17]

    Liu H M, Fan J L, Tian J M, You F 2009 China Tungsten Ind. 24 29 (in Chinese) [刘辉明, 范景莲, 田家敏, 游峰 2009 中国钨业 24 29]

    [18]

    Hessel S, Shpigler B, Botstein O 1993 Rev. Chem. Eng. 9 345

    [19]

    Wu X W, Luo J S, Lu B Z, Xie C H, Pi Z M, Hu M Z, Xu T, Wu G G, Yu Z M, Yi D Q 2009 Trans. Nonferrous Met. Soc. China 19 785

    [20]

    Xu L, Yan Q Z, Xia M, Zhu L X 2013 Int. J. Refract. Met. Hard Mater. 36 238

    [21]

    Yu Y X 2013 Phys. Chem. Chem. Phys. 15 16819

    [22]

    Yu Y X 2016 J. Phys. Chem. C 120 5288

    [23]

    Yang G M, Xu Q, Li B, Zhang H Z, He X G 2015 Acta Phys. Sin. 64 127301 (in Chinese) [杨光敏, 徐强, 李冰, 张汉壮, 贺小光 2015 物理学报 64 127301]

    [24]

    Xue L, Ren Y M 2016 Acta Phys. Sin. 65 156301 (in Chinese) [薛丽, 任一鸣 2016 物理学报 65 156301]

    [25]

    Yu Y X 2014 ACS Appl. Mater. Interfaces 6 16267

    [26]

    Li B, Wu T Q, Wang C C, Jiang Y 2016 Acta Phys. Sin. 65 216301 (in Chinese) [李白, 吴太权, 汪辰超, 江影 2016 物理学报 65 216301]

    [27]

    Gholizadeh R, Yu Y X 2015 Appl. Surf. Sci. 357 1187

    [28]

    Chatten R, Chadwick A V, Rougier A, Lindan P J D 2005 J. Phys. Chem. B 109 3146

    [29]

    Yakovkin I N, Gutowski M 2007 Surf. Sci. 601 1481

    [30]

    Tanner R E, Meethunkij P, Altman E I 2000 J. Phys. Chem. B 104 12315

    [31]

    Ma S, Frederick B G 2003 J. Phys. Chem. B 107 11960

    [32]

    Tian X G, Zhang Y, Yang T S 2012 J. Syn. Cryst. 41 323 (in Chinese) [田相桂, 张跃, 杨泰生 2012 人工晶体学报 41 323]

    [33]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Matter 14 2717

    [34]

    Wang Y, Perdew J P, Chevary J A, Macdonald L D, Vosko S H 1990 Phys. Rev. A 41 40

    [35]

    Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J, Fiolhais C 1992 Phys. Rev. B 46 6671

    [36]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [37]

    Fletcher R 1970 Comput. J. 13 317

    [38]

    Tian X G, Zhang Y, Yang T S 2012 Acta Phys. Chim. Sin. 28 1063

    [39]

    Yamaguchi O, Tomihisa D, Kawabata H, Shimizu K 1987 J. Am. Ceram. Soc. 70 94

    [40]

    Setyawan W, Curtarolo S 2010 Comput. Mater. Sci. 49 299

    [41]

    Sun X, Kurahashi M, Pratt A, Yamauchi Y 2011 Sur. Sci. 605 1067

  • [1] 张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究. 物理学报, 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [2] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究. 物理学报, 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [3] 周红才, 黄树来, 李桂霞, 于桂凤, 王娟, 步红霞. 一氧化碳纳米管束低压相的第一性原理研究. 物理学报, 2019, 68(21): 217101. doi: 10.7498/aps.68.20190539
    [4] 盛喆, 戴显英, 苗东铭, 吴淑静, 赵天龙, 郝跃. 各Li吸附组分下硅烯氢存储性能的第一性原理研究. 物理学报, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [5] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [6] 杨光敏, 梁志聪, 黄海华. 石墨烯吸附Li团簇的第一性原理计算. 物理学报, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [7] 姜平国, 汪正兵, 闫永播, 刘文杰. W20O58(010)表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(24): 246801. doi: 10.7498/aps.66.246801
    [8] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [9] 侯清玉, 赵春旺. 第一性原理研究钨掺杂对锐钛矿物性的影响. 物理学报, 2015, 64(24): 247201. doi: 10.7498/aps.64.247201
    [10] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [11] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [12] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [13] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究 . 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [14] 杜玉杰, 常本康, 王晓晖, 张俊举, 李飙, 付小倩. Cs/GaN(0001)吸附体系电子结构和光学性质研究. 物理学报, 2012, 61(5): 057102. doi: 10.7498/aps.61.057102
    [15] 卢金炼, 曹觉先. 单个钛原子储氢能力和储氢机制的第一性原理研究. 物理学报, 2012, 61(14): 148801. doi: 10.7498/aps.61.148801
    [16] 陈玉红, 杜瑞, 张致龙, 王伟超, 张材荣, 康龙, 罗永春. H2 分子在Li3N(110)表面吸附的第一性原理研究. 物理学报, 2011, 60(8): 086801. doi: 10.7498/aps.60.086801
    [17] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [18] 吴小霞, 王乾恩, 王福合, 周云松. Cl原子在γ-TiAl(111)表面吸附的第一性原理研究. 物理学报, 2010, 59(10): 7278-7284. doi: 10.7498/aps.59.7278
    [19] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [20] 许桂贵, 吴青云, 张健敏, 陈志高, 黄志高. 第一性原理研究氧在Ni(111)表面上的吸附能及功函数. 物理学报, 2009, 58(3): 1924-1930. doi: 10.7498/aps.58.1924
计量
  • 文章访问数:  3507
  • PDF下载量:  428
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 修回日期:  2017-01-14
  • 刊出日期:  2017-04-05

三氧化钨表面氢吸附机理的第一性原理研究

  • 1. 江西理工大学冶金与化学工程学院, 赣州 341000
  • 通信作者: 姜平国, pingguo_jiang@163.com
    基金项目: 国家自然科学基金(批准号:51564016)和江西省自然科学基金(批准号:20151BAB206029) 资助的课题.

摘要: 采用基于密度泛函理论的第一性原理平面波超软赝势方法,在广义梯度近似下,研究了立方WO3,WO3(001)表面结构及其氢吸附机理. 计算结果表明立方晶体WO3理论带隙宽度为0.587 eV. WO3(001)表面有WO终止(001)表面和O终止(001)表面两种结构,表面结构优化后W-O键长和W-O-W键角改变,从而实现表面弛豫;WO终止(001)表面和O终止(001) 表面分别呈现n型半导体特征和p型半导体特征. 分别计算了H原子吸附在WO终止(001)表面和O终止(001)表面的H-O2c-H,H-O2cH-O2c,H-O1c-H 和H-O1cH-O1c四种吸附构型,其中H-O1c-H 吸附构型的吸附能最小,H-O 键最短,H失去电子数最多,分别为-3.684 eV,0.0968 nm和0.55e,此吸附构型最稳定. 分析其吸附前后的态密度,带隙从吸附前的0.624 eV 增加到1.004 eV,价带宽度基本不变. H的1s轨道电子与O 的2p,2s轨道电子相互作用,在-8和-20 eV附近各形成了一个较强的孤立电子峰,两个H原子分别与一个O1c原子形成化学键,最终吸附反应生成了一个H2O分子,同时产生了一个表面氧空位.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回